递归函数应用

首先,我们来对比两个递归方法的求值步骤。

假设有方法gcd,用来计算两个数的最大公约数。下面是欧几里得算法的实现:

def gcp(a: Int, b: Int): Int =
if (b == 0) a else gcp(b, a % b)

gcp(14, 21)的求解过程如下:

gcp(14, 21)
if (21 == 0) 14 else gcd(21, 14 % 21)
if (false) 14 else gcd(21, 14 % 21)
gcd(21, 14 % 21)
gcd(21, 14)
if (14 == 0) 21 else gcp(14, 21 % 14)
if (false) 21 else gcp(14, 21 % 14)
gcp(14, 7)
gcd(7, 14 % 7)
gcd(7, 0)
if (0 == 0) 7 else gcd(0, 7 % 0)
if (true) 7 else gcd(0, 7 % 0)
7

再看数列阶乘问题:

def factorial(n: Int): Int =
if (n == 0) 1 else n * factorial(n - 1)

factorial(4)的求解过程如下:

factorial(4)
if (4 == 0) 1 else 4 * factorial(4 - 1)
4 * factorial(3)
4 * (3 * factorial(2))
4 * (3 * (2 * (factorial(1)))
4 * (3 * (2 * (1 * factorial(0)))
4 * (3 * (2 * (1 * 1))
24

上面两种递归的执行顺序有什么区别呢?先看最大公约数的递归求解过程,每次递归调用的时候不需要记录其他的值,而是直接调用递归函数;再看阶乘的递归求解过程,我们发现每次递归调用的结果还需要乘上一个n才能得到结果,也就是说每次递归调用都需要维系调用之前的状态。

这就是递归的两种不同形式,首递归(head recursion)和尾递归(tail recursion)。上面的阶乘递归解法就是一种首递归,而最大公约数的球解则是一个尾递归。

对于首递归,递归函数调用之后,后续还有计算,因此在执行过程中需要不断的使用新的栈帧来保存临时状态。首递归在递归层数较少的情况下不会有问题,但是由于需要消耗栈帧来保存临时变量,当递归层数达到一定数量的时候会导致stack overflow的异常。

对于尾递归,所有的计算都在递归调用之前完成,因此不需要保存临时状态,也就是说完全可以复用当前栈帧。如果复用了栈帧,那么不管递归多少层都不会发生stack overflow。这种复用栈帧的优化本质其实就是迭代计算,可以说优化后的尾递归是迭代的一种表达方式,其执行效率和迭代一样。

广义上来说,只要一个递归函数的最后一个操作只由调用函数组成(不管是其他函数,还是其他函数),栈帧都可以复用,这这种递归形式都可以叫做尾递归。而Scala中并不是对所有的尾递归都做了优化,只有那些满足严格尾递归形式的递归函数才会被优化而服用栈帧。

尾递归栈帧

为了不引起歧义,这里的尾递归指的是scala中能够进行栈帧复用优化的递归。我们先来看看非尾递归函数的堆栈,定义如下非尾递归函数headRecStackFrame,并调用headRecStackFrame(10),:

@tailrec
def headRecStackFrame(n: Int): Int =
if (n == 0) throw new Exception("boom!")
else n * headRecStackFrame(n - 1) headRecStackFrame(5)

我们得到的异常堆栈如下:

java.lang.Exception: boom!
at cc.databus.tailrecur.TailRecursionStackFrame$.headRecStackFrame(TailRecursionStackFrame.scala:13)
at cc.databus.tailrecur.TailRecursionStackFrame$.headRecStackFrame(TailRecursionStackFrame.scala:14)
at cc.databus.tailrecur.TailRecursionStackFrame$.headRecStackFrame(TailRecursionStackFrame.scala:14)
at cc.databus.tailrecur.TailRecursionStackFrame$.headRecStackFrame(TailRecursionStackFrame.scala:14)
at cc.databus.tailrecur.TailRecursionStackFrame$.headRecStackFrame(TailRecursionStackFrame.scala:14)
at cc.databus.tailrecur.TailRecursionStackFrame$.headRecStackFrame(TailRecursionStackFrame.scala:14)
at cc.databus.tailrecur.TailRecursionStackFrame$.main(TailRecursionStackFrame.scala:26)
at cc.databus.tailrecur.TailRecursionStackFrame.main(TailRecursionStackFrame.scala)

可以看到6个headRecStackFrame调用的栈帧。

再来看看尾递归函数的堆栈。定义尾递归函数tailRecStackFrame,并调用tailRecStackFrame(5):

@tailrec
def tailRecStackFrame(n: Int): Int =
if (n == 0) throw new Exception("boom!")
else tailRecStackFrame(n - 1) tailRecStackFrame(5)

得到如下异常堆栈:

java.lang.Exception: boom!
at cc.databus.tailrecur.TailRecursionStackFrame$.tailRecStackFrame(TailRecursionStackFrame.scala:9)
at cc.databus.tailrecur.TailRecursionStackFrame$.main(TailRecursionStackFrame.scala:18)
at cc.databus.tailrecur.TailRecursionStackFrame.main(TailRecursionStackFrame.scala)

这里我们看到只有一个tailRecStackFrame的调用栈帧。

对比headRecStackFrametailRecStackFrame的异常堆栈,可以明显发现tailRecStackFrame尾递归函数服用了调用栈帧。

Scala中的尾递归

前面提到,Scala中的只对严格形式的尾递归进行了优化,对于严格形式的尾递归,我们可以放心使用,不用担心栈溢出的问题。为了帮助我们判断一个递归函数是否是满足scala的尾递归优化策略,scala提供了@tailrec注解,这个注解一方面可以方便我们识别尾递归,同事编译器会自动检测该函数是否是尾递归,若不是,会导致如下编译错误:

Error:(15, 10) could not optimize @tailrec annotated method headRecStackFrame: it contains a recursive call not in tail position
else n * headRecStackFrame(n - 1)

在scala中,下面情况下scala不会优化:

  • 通过函数值实现递归
  • 不是直接调用递归函数,而是嵌套在其他函数中调用

通过函数值实现递归的例子:

object NonTailRecursionExample {
val fun = funcValRecursion _
def funcValRecursion(a: Int): Int =
if(a == 0) throw new Exception("Boom!")
else fun(a - 1) def main(args: Array[String]): Unit = {
funcValRecursion(3)
}
}

嵌套函数调用实现递归的:

object NonTailRecursionExample {
def anotherFunc(a: Int): Int =
nestFunRecursion(a) def nestFunRecursion(a: Int): Int =
if (a == 0) throw new Exception("Boom!")
else anotherFunc(a - 1) def main(args: Array[String]): Unit = {
nestFunRecursion(3)
}
}

Scala尾递归的更多相关文章

  1. 【Scala】尾递归优化

    以递归方式思考 递归通过灵巧的函数定义,告诉计算机做什么.在函数式编程中,随处可见递归思想的运用.下面给出几个递归函数的例子: object RecursiveExample extends App{ ...

  2. Scala Tail Recursion (尾递归)

    Scala对尾递归进行了优化,甚至提供了专门的标注告诉编译器需要进行尾递归优化.不过这种优化仅限于严格的尾递归,间接递归等情况,不会被优化. 尾递归的概念 递归,大家都不陌生,一个函数直接或间接的调用 ...

  3. Scala进阶之路-尾递归优化

    Scala进阶之路-尾递归优化 作者:尹正杰 版权声明:原创作品,谢绝转载!否则将追究法律责任. 递归调用有时候能被转换成循环,这样能节约栈空间.在函数式编程中,这是很重要的,我们通常会使用递归方法来 ...

  4. Scala 经典的模式匹配和尾递归

    Scala 经典的模式匹配和尾递归 package io import java.io.{BufferedWriter, File, FileWriter} import java.text.Simp ...

  5. Thinking in scala (4)----阶乘与尾递归

    code1: object factorial{ def main(args:Array[String])={ println(factorial(args(0).toInt)) } def fact ...

  6. scala通过尾递归解析提取字段信息

    一.背景 获取数据中以“|”作为字段间的分隔符,但个别字段中数据也是以“|”作为分隔符.因此,在字段提取时需要保护数据完整性. 二.实现 1.数据以“|”分隔,可以采用递归方式迭代解析.通过尾递归方式 ...

  7. scala实战学习-尾递归函数

    求 $$ \Sigma\sideset{^b_a}f(x) $$ object sumfunc{ def sum(f: Int => Int)(a: Int)(b:Int): Int = { @ ...

  8. Scala 的确棒

    我的确认为计算机学院应该开一门 Scala 的语言课程. 在这篇文章中,我会讲述为什么我会有这样的想法,在此之前,有几点我想要先声明一下: 本文无意对编程语言进行评比,我要讲述的主体是为什么你应该学习 ...

  9. Scala HandBook

    目录[-] 1.   Scala有多cool 1.1.     速度! 1.2.     易用的数据结构 1.3.     OOP+FP 1.4.     动态+静态 1.5.     DSL 1.6 ...

随机推荐

  1. R内的gsub()函数

    今天遇到了一个问题就是,如果数据里面有逗号,那么如何转换他们.就像下面的这样: > exercise9_1$地区生产总值 [1] 16,251.93 11,307.28 24,515.76 11 ...

  2. <JZOJ5907>轻功

    dp大水题 由于未知错误wa了一个点 乱改了一下就A了 瘫 #include<cstdio> #include<iostream> #include<cstring> ...

  3. Python---11模块

    在计算机程序的开发过程中,随着程序代码越写越多,在一个文件里代码就会越来越长,越来越不容易维护. 为了编写可维护的代码,我们把很多函数分组,分别放到不同的文件里,这样,每个文件包含的代码就相对较少,很 ...

  4. 基于物理的渲染——间接光照

    在前面的文章中我们已经给出了基于物理的渲染方程: 并介绍了直接光照的实现.然而在自然界中,一个物体不会单独存在,光源会照射到其他的物体上,反射的光会有一部分反射到物体上.为了模拟这种环境光照的形式,我 ...

  5. 递归、尾递归和使用Stream延迟计算优化尾递归

    我们在学数据结构的时候必然会接触栈(Stack),而栈有一个重要的应用是在程序设计语言中实现递归.递归用途十分广泛,比如我们常见的阶乘,如下代码: 1234 public static int (in ...

  6. 微软亚洲研究院的“哈利·波特”:Thomas Moscibroda

    在微软亚洲研究院,有一位名为Thomas Moscibroda的研究员几乎是无人不知.无人不晓,江湖人送外号"哈利·波特".Thomas认为他这么"红"是因为他 ...

  7. Liferay7 Intellij IDEA 开发环境搭建

    一.安装Liferay插件 安装过程不在赘述,推荐两种安装方式: 通过Intellij插件市场安装 通过下载插件zip包安装 安装完成后,在项目板块中点鼠标右键,会出现Liferay菜单. 二.安装L ...

  8. 冒泡排序算法(C#、Java、Python、JavaScript、C、C++实现)

    一.介绍 它重复地走访过要排序的元素列,依次比较两个相邻的元素,如果顺序(如从大到小.首字母从Z到A)错误就把他们交换过来. 走访元素的工作是重复地进行直到没有相邻元素需要交换,也就是说该元素列已经排 ...

  9. 网站提权之MSF骚操作

    当我们在进行web渗透测试的时候,拿到了webshell,但是在执行net user.whoami.类似的命令会发现怎么好像用不了,没有回显,权限不够,这可怎么办呐? 测试环境: 内网,没钱买服务器, ...

  10. jvm GC算法和种类

    1.GC     垃圾收集 Garbage Collection 通常被称为“GC”,它诞生于1960年 MIT 的 Lisp 语言,经过半个多世纪,目前已经十分成熟了. jvm 中,程序计数器.虚拟 ...