Poj 最短路和次短路的个数 Dij+优化?。
Description
Tour operator Your Personal Holiday organises guided bus trips across the Benelux. Every day the bus moves from one city S to another city F. On this way, the tourists in the bus can see the sights alongside the route travelled. Moreover, the bus makes a number of stops (zero or more) at some beautiful cities, where the tourists get out to see the local sights.
Different groups of tourists may have different preferences for the sights they want to see, and thus for the route to be taken from S to F. Therefore, Your Personal Holiday wants to offer its clients a choice from many different routes. As hotels have been booked in advance, the starting city S and the final city F, though, are fixed. Two routes from S to F are considered different if there is at least one road from a city A to a city B which is part of one route, but not of the other route.
There is a restriction on the routes that the tourists may choose from. To leave enough time for the sightseeing at the stops (and to avoid using too much fuel), the bus has to take a short route from S to F. It has to be either a route with minimal distance, or a route which is one distance unit longer than the minimal distance. Indeed, by allowing routes that are one distance unit longer, the tourists may have more choice than by restricting them to exactly the minimal routes. This enhances the impression of a personal holiday.

For example, for the above road map, there are two minimal routes from S = 1 to F = 5: 1 → 2 → 5 and 1 → 3 → 5, both of length 6. There is one route that is one distance unit longer: 1 → 3 → 4 → 5, of length 7.
Now, given a (partial) road map of the Benelux and two cities S and F, tour operator Your Personal Holiday likes to know how many different routes it can offer to its clients, under the above restriction on the route length.
Input
The first line of the input file contains a single number: the number of test cases to follow. Each test case has the following format:
One line with two integers N and M, separated by a single space, with 2 ≤ N ≤ 1,000 and 1 ≤ M ≤ 10, 000: the number of cities and the number of roads in the road map.
M lines, each with three integers A, B and L, separated by single spaces, with 1 ≤ A, B ≤ N, A ≠ B and 1 ≤ L ≤ 1,000, describing a road from city A to city B with length L.
The roads are unidirectional. Hence, if there is a road from A to B, then there is not necessarily also a road from B to A. There may be different roads from a city A to a city B.
One line with two integers S and F, separated by a single space, with 1 ≤ S, F ≤ N and S ≠ F: the starting city and the final city of the route.
There will be at least one route from S to F.
Output
For every test case in the input file, the output should contain a single number, on a single line: the number of routes of minimal length or one distance unit longer. Test cases are such, that this number is at most 109 = 1,000,000,000.
Sample Input
2
5 8
1 2 3
1 3 2
1 4 5
2 3 1
2 5 3
3 4 2
3 5 4
4 5 3
1 5
5 6
2 3 1
3 2 1
3 1 10
4 5 2
5 2 7
5 2 7
4 1
Sample Output
3
2 http://www.cnblogs.com/candy99/p/5873047.html //参考代码 注意仔细体会vis数组,必不可少的,不仅仅是优化时间
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<queue>
using namespace std;
const int N=;
const int M=;
const int INF=0x3f3f3f3f;
int n,m;
struct edge{
int to,w,next;
}e[M];
int head[N],tot=;
void add(int u,int v,int w){
e[tot].to=v;
e[tot].w=w;
e[tot].next=head[u];
head[u]=tot++;
}
int d[N][],vis[N][],cnt[N][];
struct hn{
int u,d,p;
hn(int a=,int b=,int c=):u(a),d(b),p(c){}
bool operator < (const hn &rhs)const{
return d>rhs.d;
}
};
void Dij(int s){
priority_queue<hn>Q;
memset(vis,,sizeof(vis));
memset(cnt,,sizeof(cnt));
for(int i=;i<=n;++i) d[i][]=d[i][]=INF;
Q.push(hn(s,,));
d[s][]=,cnt[s][]=;
while(!Q.empty()){
hn now=Q.top();Q.pop();
int u=now.u,p=now.p;
if(vis[u][p]) continue;
vis[u][p]=;
for(int i=head[u];i+;i=e[i].next){
int v=e[i].to,w=e[i].w;
if(d[v][]>d[u][p]+w) {
d[v][]=d[v][],cnt[v][]=cnt[v][];
d[v][]=d[u][p]+w,cnt[v][]=cnt[u][p];
Q.push(hn(v,d[v][],));
Q.push(hn(v,d[v][],));
}
else if(d[v][]==d[u][p]+w) cnt[v][]+=cnt[u][p];
else if(d[v][]>d[u][p]+w) {
d[v][]=d[u][p]+w;
cnt[v][]=cnt[u][p];
Q.push(hn(v,d[v][],));
}
else if(d[v][]==d[u][p]+w) cnt[v][]+=cnt[u][p];
}
}
}
int main(){
int T,u,v,w;
for(scanf("%d",&T);T--;){
memset(head,-,sizeof(head));
tot=;
scanf("%d%d",&n,&m);
for(int i=;i<=m;++i) { scanf("%d%d%d",&u,&v,&w);add(u,v,w);}
int s,f;
scanf("%d%d",&s,&f);
Dij(s);
if(d[f][]==d[f][]+) cnt[f][]+=cnt[f][];
printf("%d\n",cnt[f][]);
}
}
Poj 最短路和次短路的个数 Dij+优化?。的更多相关文章
- poj 3463 Sightseeing( 最短路与次短路)
http://poj.org/problem?id=3463 Sightseeing Time Limit: 2000MS Memory Limit: 65536K Total Submissio ...
- POJ 3635 - Full Tank? - [最短路变形][手写二叉堆优化Dijkstra][配对堆优化Dijkstra]
题目链接:http://poj.org/problem?id=3635 题意题解等均参考:POJ 3635 - Full Tank? - [最短路变形][优先队列优化Dijkstra]. 一些口胡: ...
- POJ - 3463 Sightseeing 最短路计数+次短路计数
F - Sightseeing 传送门: POJ - 3463 分析 一句话题意:给你一个有向图,可能有重边,让你求从s到t最短路的条数,如果次短路的长度比最短路的长度多1,那么在加上次短路的条数. ...
- POJ 3463 有向图求次短路的长度及其方法数
题目大意: 希望求出走出最短路的方法总数,如果次短路只比最短路小1,那也是可取的 输出总的方法数 这里n个点,每个点有最短和次短两种长度 这里采取的是dijkstra的思想,相当于我们可以不断找到更新 ...
- POJ 3463 Sightseeing 【最短路与次短路】
题目 Tour operator Your Personal Holiday organises guided bus trips across the Benelux. Every day the ...
- dijkstra(最短路)和Prim(最小生成树)下的堆优化
dijkstra(最短路)和Prim(最小生成树)下的堆优化 最小堆: down(i)[向下调整]:从第k层的点i开始向下操作,第k层的点与第k+1层的点(如果有)进行值大小的判断,如果父节点的值大于 ...
- POJ---3463 Sightseeing 记录最短路和次短路的条数
Sightseeing Time Limit: 2000MS Memory Limit: 65536K Total Submissions: 9247 Accepted: 3242 Descr ...
- 最短路和次短路问题,dijkstra算法
/* *题目大意: *在一个有向图中,求从s到t两个点之间的最短路和比最短路长1的次短路的条数之和; * *算法思想: *用A*求第K短路,目测会超时,直接在dijkstra算法上求次短路; ...
- UESTC30-最短路-Floyd最短路、spfa+链式前向星建图
最短路 Time Limit: 3000/1000MS (Java/Others) Memory Limit: 65535/65535KB (Java/Others) 在每年的校赛里,所有进入决赛的同 ...
随机推荐
- 深拷贝、浅拷贝与Cloneable接口
深拷贝与浅拷贝 浅拷贝 public class Student implements Cloneable{ Integer a; Integer b; @Override protected Obj ...
- hdu_1052 Tian Ji -- The Horse Racing 贪心
Tian Ji -- The Horse Racing Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (J ...
- java 之 构造器 static关键字
构造器 特点: 方法名和类名一至,没有void没有返回,无参数的称为无参构造器,有参数的称为有参构造器 语法: public 类名 {数据类型 参数名} 目的:创建对象 注意:如果类中没有带有参数的 ...
- pvresize
lvm pv 扩容 pvresize 当PV对应的设备分区(如md软raid)扩容之后,利用该命令可以扩容PV
- Netty(五):ServerBootstrap启动流程
这篇文章主要是对ServerBootstrap启动流程做一个梳理,方便我们串联起各个类,同时也对主要的一些类有个大概的印象,方便之后逐个类的深入学习. 本篇文章不在具体贴出代码,而是对整个启动流程画了 ...
- 题目分享J
题意:从一棵树的树根出发,除树根外每个节点都有其能经过的最多次数与经过后会获得的价值(可能为负,最多只能领一次价值),问最终走回树根能获得的最大价值以及有无可达到此价值的多种走法(ps:一开始在树根就 ...
- 阿里云服务器连接AWS-S3
1.找到一个路径下载 aws-cli (使用离线包安装) wget -P /usr/local/software https://s3.amazonaws.com/aws-cli/awscli-bu ...
- HTML data-* 属性的含义和使用
data-*自定义数据属性 首先讲一下语法格式: data-* =“值” data-* 属性包括两部分: 属性名不应该包含任何大写字母,并且在前缀 "data-" 之后必须有至 ...
- Hadoop入门学习笔记-第三天(Yarn高可用集群配置及计算案例)
什么是mapreduce 首先让我们来重温一下 hadoop 的四大组件:HDFS:分布式存储系统MapReduce:分布式计算系统YARN: hadoop 的资源调度系统Common: 以上三大组件 ...
- Polar码快速入门
Polar码快速入门 本科生在学习极化码时,并不是件简单的事情.网上极化码的资料很少,而且基本上都是较难的论文.这篇文章是用来帮你快速入门极化码. Poalr码背景 2015 年,国际电信联盟无线通信 ...