POJ - 3693

题意

SPOJ - REPEATS的进阶版,在这题的基础上输出字典序最小的重复字串。

思路

跟上题一样,先求出最长的重复次数,在求的过程中顺便纪录最多次数可能的长度。

因为sa数组是按照字典序排好的,所以我们顺序遍历sa数组,找到第一个符合的输出即可。

why 字符串结尾加0

我懵了,看不懂论文中的解释(下图)



论文中的解释是说 这样搞,在cmp函数中就不用加越界判断。(我之前也好奇为啥cmp中不用加越界。。。)

下面解释是我自己的理解,不一定准确

原因:

如果不加一个前面没有出现过的字符,那么在求height的时候可能会出问题:

\(while(str[i+k]==str[sa[rk[i]-1]+k]) ++k;\)

上面求\(height\)的代码中并没有判断\(i+k\)以及\(sa[rk[i]-1]+k\)是否越界,

因此两个式子中的一个越界的时候,假如之前的样例存在比当前字符串长的,

并且越界之后\(str[i+k]\)还和\(str[sa[rk[i]-1]+k]\)相等,这样height数组就错了。

加前面没有出现过的字符,就是为了书写方便,越界之后循环就自己退出了。

为什么要加0呢?

有些代码字符串下标是从0开始,在求sa数组的时候,要加一个字符,

顺便把字符串的扩展到了下标n,这时如果加的不是0,而是一个>= 字符串中最小字符 的一个字符的话,

那么后缀n就会影响到sa数组的正确性。

而加0,正好使得\(rk[n]==0\),\(sa[0]=n\),后缀0~n-1的排名全在1-n之间。

综上:

字符串下标从1开始,加一个没有出现过的字符就可以。

下标从0开始,加一个<=出现过的最小字符就可以:0

代码

#include<stdio.h>
#include<string.h>
#include<algorithm>
#include<iostream>
#include<vector>
#include<math.h>
#define pb push_back
typedef long long ll;
using namespace std;
const int inf = 0x3f3f3f3f;
const int mod = 1e9+7;
const int N = 1e5+10; int sa[N],cnt[N],pos[N],rk[N],oldrk[N],ht[N],n,m;
char str[N];
bool cmp(int a,int b,int k)
{
return oldrk[a]==oldrk[b]&&oldrk[a+k]==oldrk[b+k];
}
void getsa()
{
memset(cnt,0,sizeof(cnt));
m=122;
for(int i=1; i<=n; ++i) ++cnt[rk[i]=str[i]];
for(int i=1; i<=m; ++i) cnt[i]+=cnt[i-1];
for(int i=n; i; i--) sa[cnt[rk[i]]--]=i;
for(int k=1; k<=n; k<<=1)
{
int num=0;
for(int i=n-k+1; i<=n; ++i) pos[++num]=i;
for(int i=1; i<=n; ++i) if(sa[i]>k) pos[++num]=sa[i]-k;
memset(cnt,0,sizeof(cnt));
for(int i=1; i<=n; ++i) ++cnt[rk[i]];
for(int i=1; i<=m; ++i) cnt[i]+=cnt[i-1];
for(int i=n; i; i--) sa[cnt[rk[pos[i]]]--]=pos[i];
num=0;
memcpy(oldrk,rk,sizeof(rk));
for(int i=1; i<=n; ++i) rk[sa[i]]=cmp(sa[i],sa[i-1],k)?num:++num;
if(num==n) break;
m=num;
}
for(int i=1; i<=n; ++i)
rk[sa[i]]=i;
int k=0;
for(int i=1; i<=n; ++i)
{
if(k) --k;
while(str[i+k]==str[sa[rk[i]-1]+k]) ++k;
//下面就是加上越界判断
// while(i+k<=n&&sa[rk[i]-1]+k<=n&&str[i+k]==str[sa[rk[i]-1]+k])
// ++k;
ht[rk[i]]=k;
}
}
int dp[N][20];
void RMQ()
{
for(int i=1; i<=n; ++i) dp[i][0]=ht[i];
for(int j=1; (1<<j)<=n; ++j)
{
for(int i=1; i+(1<<j)-1<=n; ++i)
dp[i][j]=min(dp[i][j-1],dp[i+(1<<(j-1))][j-1]);
}
}
int query(int l,int r)
{
int k=0;
while((1<<(k+1))<=(r-l+1)) ++k;
//int k=int(log(r-l+1.0)/log(2.0));// 比上面慢
return min(dp[l][k],dp[r-(1<<k)+1][k]);
}
int lcp(int i,int j)
{
i=rk[i],j=rk[j];
if(i>j) swap(i,j);
return query(i+1,j);
}
int tot,len[N];
int main()
{
int cas=0;
while(~scanf("%s",str+1)&&strcmp(str+1,"#"))
{
tot=0;
n=strlen(str+1);
str[n+1]='c';
getsa();
RMQ();
printf("Case %d: ",++cas);
int ans=0;
for(int i=1; i<=n; ++i)
{
for(int j=1; j+i<=n; j+=i)
{
int now=lcp(j,j+i);
int num=now/i+1;
int k=j-(i-now%i);
if(k>0&&lcp(k,k+i)>=i) ++num;
if(num>ans)
{
ans=num;
tot=0;
len[tot++]=i;
}
else if(num==ans)
{
if(len[tot-1]!=i)
len[tot++]=i;
}
}
}
int flag=0;
for(int i=1; i<=n; ++i)
{
for(int j=0; j<tot; ++j)
{
int l=len[j];
if(lcp(sa[i],sa[i]+l)>=(ans-1)*l)
{
str[sa[i]+ans*l]='\0';//使用结束符比一个个输出快
printf("%s\n",str+sa[i]);
flag=1;
break;
}
}
if(flag)
break;
}
}
return 0;
}
/*
*/

【Poj-3693】Maximum repetition substring 后缀数组 连续重复子串的更多相关文章

  1. POJ 3693 Maximum repetition substring ——后缀数组

    重复次数最多的字串,我们可以枚举循环节的长度. 然后正反两次LCP,然后发现如果长度%L有剩余的情况时,答案是在一个区间内的. 所以需要找到区间内最小的rk值. 两个后缀数组,四个ST表,$\Thet ...

  2. poj 3693 Maximum repetition substring (后缀数组)

    其实是论文题.. 题意:求一个字符串中,能由单位串repeat得到的子串中,单位串重复次数最多的子串.若有多个重复次数相同的,输出字典序最小的那个. 解题思路:其实跟论文差不多,我看了很久没看懂,后来 ...

  3. POJ 3693 Maximum repetition substring (后缀数组+RMQ)

    题意:给定一个字符串,求其中一个由循环子串构成且循环次数最多的一个子串,有多个就输出最小字典序的. 析:枚举循环串的长度ll,然后如果它出现了两次,那么它一定会覆盖s[0],s[ll],s[ll*2] ...

  4. POJ3693 Maximum repetition substring 后缀数组

    POJ - 3693 Maximum repetition substring 题意 输入一个串,求重复次数最多的连续重复字串,如果有次数相同的,则输出字典序最小的 Sample input ccab ...

  5. POJ 3693 Maximum repetition substring(后缀数组)

    Description The repetition number of a string is defined as the maximum number R such that the strin ...

  6. 后缀数组 POJ 3693 Maximum repetition substring

    题目链接 题意:给定一个字符串,求重复次数最多的连续重复子串. 分析:(论文上的分析)先穷举长度 L,然后求长度为 L 的子串最多能连续出现几次.首先连续出现 1 次是肯定可以的,所以这里只考虑至少 ...

  7. POJ - 3693 Maximum repetition substring(重复次数最多的连续重复子串)

    传送门:POJ - 3693   题意:给你一个字符串,求重复次数最多的连续重复子串,如果有一样的,取字典序小的字符串. 题解: 比较容易理解的部分就是枚举长度为L,然后看长度为L的字符串最多连续出现 ...

  8. POJ 3693 Maximum repetition substring(连续重复子串)

    http://poj.org/problem?id=3693 题意:给定一个字符串,求重复次数最多的连续重复子串. 思路: 这道题确实是搞了很久,首先枚举连续子串的长度L,那么子串肯定包含了r[k], ...

  9. POJ3693 Maximum repetition substring —— 后缀数组 重复次数最多的连续重复子串

    题目链接:https://vjudge.net/problem/POJ-3693 Maximum repetition substring Time Limit: 1000MS   Memory Li ...

随机推荐

  1. JZ2440 linux-3.4.2内核启动报错:Verifying Checksum ... Bad Data CRC

    使用的uboot版本是1.1.6,是打过u-boot-1.1.6_jz2440.patch的: kernel使用的版本是3.4.2, 也是打过linux-3.4.2_camera_jz2440.pat ...

  2. 一不小心实现了RPC

    前言 随着最近关注 cim 项目的人越发增多,导致提的问题以及 Bug 也在增加,在修复问题的过程中难免代码洁癖又上来了. 看着一两年前写的东西总是怀疑这真的是出自自己手里嘛?有些地方实在忍不住了便开 ...

  3. centos7.4安装docker

    安装docker的前提条件 1)关闭系统的防火墙和selinux 2)  同步系统时间 3)系统必须是centos7以上 移除旧版本yum remove docker docker-client do ...

  4. 使用Spring Boot搭建你的第一个应用程序

    文章目录 依赖配置 main程序配置 MVC配置 安全配置 存储 Web 页面和Controller 异常处理 测试 结论 Spring Boot是Spring平台的约定式的应用框架,使用Spring ...

  5. 【linux题目】第三关

    1. 解释下什么是GPL,GNU,自由软件? 2. 如何选择Linux操作系统版本? 3. 安装系统时如何给Linux操作系统分区? 4. 描述Linux系统的启动过程? 5. 简要说出20个Linu ...

  6. npm小工具、技巧合集:让你的npm“健步如飞”

    1.解决安装速度慢问题-nrm 解决痛点 由于npm的包仓库是在国外,npm包安装速度较慢,部分包甚至无法安装. 对比cnpm的优势 1.cnpm增加了大脑的记忆和思维负担,常常需要考虑使用npm还是 ...

  7. mac 关闭系统完整性保护 SIP(System Integrity Protection)的方法

    在 OS X El Capitan 中有一个跟安全相关的模式叫 SIP(System Integrity Protection ) ,它禁止让软件以 root 身份来在 mac 上运行,并且对于目录 ...

  8. 谈谈你对vuex的理解

    vuex创建公有仓库的插件 1.储存公共状态 2.能够根据事件来修改状态 3.多个组件都需要变化,有机制把这个新的状态通知给所有的组件 vuex中的四个类 1.state    定义需要共享的状态 2 ...

  9. 关于:Express会被Koa2取代吗?

    知会上看到有个问题<Express会被Koa2取代吗?>.刚好对Express.koa有点小研究,于是简单回答了一下. 1.先说结论 目前没有看到Express会被koa2取代的迹象. 目 ...

  10. 开始导入第一个第三方库jieba

    在做python的练习题,想看看运行结果. 谁知,有道题,不能识别jieba,原来要导入,因为是第三方库,照着书里面的导入方法,有三种,一种是用pip,在命令行里面安装,使用pip - p 可以查看p ...