Hellc
【题目描述】
作为一个生活散漫的人,小 Z 每天早上都要耗费很久从一堆五颜六色的袜子中找出一双来穿。终于有一天,小 Z 再也无法忍受这恼人的找袜子过程,于是他决定听天由命……
具体来说,小 Z 把这 $N$ 只袜子从 $1$ 到 $N$ 编号,然后从编号 $L$ 到 $R$ 的袜子中随机选取,尽管小 Z 并不在意两只袜子是不是完整的一双,甚至不在意两只袜子是否一左一右,他却很在意袜子的颜色,毕竟穿两只不同色的袜子会很尴尬。
你的任务便是告诉小 Z ,他有多大的概率抽到两只颜色相同的袜子。当然,小 Z 希望这个概率尽量高,所以他可能会询问多个 $(L, R)$ 以方便自己选择。
【题目链接】
BZOJ 2038 小 Z 的袜子 【国家集训队 2009】
【解题思路】
在区间 $[l, r]$ 内,设 $S$ 表示袜子的颜色集合,$f(x)$ 表示颜色 $x$ 出现的次数,根据古典概型:
$$
ans = frac {sum_{x in S} C(2, f(x))} {C(2, r - l + 1)}
$$
分母可以直接求出。
考虑到 $C(x, 2) = x(x - 1) = x^2 - x$,不妨将分子展开:
$$
begin{align*}
sum_{x in S} C(2, f(x))
& = sum_{x in S} (f^2(x) - f(x)) \
& = sum_{x in S} f^2(x) - sum_{x in S} f(x) \
& = sum_{x in S} f^2(x) - (r - l + 1)
end{align*}
$$
所以我们需要求的是每种颜色出现次数的平方和。
这可以用莫队算法解决,详见 莫队算法 - 学习笔记。
【AC代码】
#include <cstdio>
#include <algorithm>
#include <cmath>
typedef long long int64;
inline int64 sqr(int64 x){
return x * x;
}
inline int64 gcd(int64 a, int64 b){
int64 d = 1;
while(a && b){
while(~a & 1 && ~b & 1) a >>= 1, b >>= 1, d <<= 1;
while(~a & 1) a >>= 1;
while(~b & 1) b >>= 1;
if(a < b) std::swap(a, b);
a = a - b >> 1;
}
return std::max(a, b) * d;
}
inline void reduce(int64 &u, int64 &d){
int64 g = gcd(u, d);
u /= g, d /= g;
}
const int MAXN = 50000;
const int MAXM = 50000;
int n, m;
int a[MAXN];
int64 ansU[MAXM], ansD[MAXM];
int blockSize;
struct Query{
int l, r;
int id;
inline friend bool operator<(const Query &a, const Query &b){
if(a.l / blockSize != b.l / blockSize) return a.l / blockSize < b.l / blockSize;
else return a.r < b.r;
}
void calc(int64 sqrSum){
ansU[id] = sqrSum - (r - l + 1);
ansD[id] = (int64大专栏 Hellc>)(r - l) * (r - l + 1);
reduce(ansU[id], ansD[id]);
}
} querys[MAXM];
int l, r;
int f[MAXN + 1];
bool in[MAXN];
int64 currAns;
inline void flip(int pos){
in[pos] ^= 1;
currAns -= sqr(f[ a[pos] ]);
if(in[pos]){
f[ a[pos] ]++;
} else{
f[ a[pos] ]--;
}
currAns += sqr(f[ a[pos] ]);
}
inline void solve(){
blockSize = static_cast<int>(std::ceil(std::sqrt(n)) + 1e-6);
std::sort(querys, querys + m);
l = 0, r = 0, flip(0);
for(Query *q = querys; q != querys + m; q++){
while(l > q->l) flip(--l);
while(r < q->r) flip(++r);
while(l < q->l) flip(l++);
while(r > q->r) flip(r--);
q->calc(currAns);
}
}
int main(){
scanf("%d%d", &n, &m);
for(int i = 0; i < n; i++) scanf("%d", &a[i]);
for(int i = 0; i < m; i++){
Query *q = &querys[i];
scanf("%d%d", &q->l, &q->r), q->l--, q->r--;
q->id = i;
}
solve();
for(int i = 0; i < m; i++) printf("%lld/%lldn", ansU[i], ansD[i]);
return 0;
}
就是这样咯~
Hellc的更多相关文章
- JavaWeb 11_jsp九大内置对象
1. out: 输出对象,向客户端输出内容2. request: 请求对象;存储"客户端向服务端发送的请求信息" request对象的常见方法: String getParamet ...
随机推荐
- Docker容器化【Dockerfile编写&&搭建与使用Docker私有仓库】
# Docker 学习目标: 掌握Docker基础知识,能够理解Docker镜像与容器的概念 完成Docker安装与启动 掌握Docker镜像与容器相关命令 掌握Tomcat Nginx 等软件的常用 ...
- Python基础——类new方法与单例模式
介绍: new方法是类中魔术方法之一,他的作用是给类实例化开辟一个内存地址,并返回一个实例化,再由__init__对这个实例进行初始化,故它的执行肯定就是在初始化方法__init__之前了.new方法 ...
- Exchang Online 保护策略
一.恶意软件筛选器 1.配置反恶意软件策略 1.1Exchange管理中心->保护->恶意软件筛选器->双击Default->编辑默认的策略 1.2单击“设置”选项,根据需要进 ...
- B-Tree(B树)原理及C++代码实现
B树是一种平衡搜索树,它可以看做是2-3Tree和2-3-4Tree的一种推广.CLRS上介绍了B树目前主要针对磁盘等直接存取的辅存设备,许多数据库系统也利用B树或B树的变种来存储信息. 本文主要针对 ...
- Qt 信息提示框 QMessageBox
information QMessageBox::information(NULL, "Title","Content",QMessageBox::Yes | ...
- 文本输入框input将输入转换为统一大小写
转载地址:http://blog.csdn.net/yieryi_/article/details/52078596 文本输入框input将输入转换为统一大小写,通常有两种方法:JS和CSS方法. 1 ...
- iOS火焰动画效果、图文混排框架、StackView效果、偏好设置、底部手势等源码
iOS精选源码 高性能图文混排框架,构架顺滑的iOS应用. 使用OpenGLE覆盖阿尔法通道视频动画播放器视图. 可选最大日期截至当日日期的日期轮选器ChooseDatePicker 简单轻量的图片浏 ...
- Part-Linux-2
1.cgi #1.创建cgi-bin目录#2.创建hi.json -> {"hi":"hello"}#3.python2 -m CGIHTTPServer ...
- )ASCII比较大小
有一个注意点: 就是在字符输入时,要用getchar诋毁那个回车键 几个比较重要的error .听了学长的没有再用void main,结果结尾忘了return ,但是竟然也编译运行成功并提交了,ole ...
- 构造函数中可以进行if判断