luogu P2704 炮兵阵地(经典状态压缩DP)
方格有m*n个格子,一共有2^(m+n)种排列,很显然不能使用暴力法,因而选用动态规划求解.
求解DP问题一般有3步,即定义出一个状态 求出状态转移方程 再用算法实现.多数DP题难youguan点在于第2步,而在状态压缩DP中,定义状态也是很关键的一个步骤.有关位运算的基础知识,按位与,按位或,异或等可自行查阅资料,这里仅作简单说明.
<<n == 2的n次方
>>n == /2的n次方
(n>>k) & // 取出整数n在二进制下的第k位
n & ((<<k)-) // 取出整数n在二进制下的后k位
(i>>j) & k // i右移j位后和k与运算
很容易想到用二进制数来表示方格,1表示放炮兵,0表示不放.在同一行中,只要没有出现两个炮兵紧邻或者两个炮兵只间隔1个位置的情况,均是合法的状态.故在二进制表示的行01串中删除字串含有"11","101"的原串即可,预处理出合法的01串并存于legal中.
vector<int> legal;
void init() { // 找到合法的摆放总数
for(int i = ; i < (<<m); i++) { // 1<<m == pow(2,m),遍历所有情况
int c1 = , c2 = ; // 3 -> (11) , 5 -> (101)
bool sub = ;
for(int j = ; j < m - ; j++) {
if(((i >> j) & c1) == c1) {
sub = ;
}
}
for(int j = ; j < m - ; j++) {
if(((i >> j) & c2) == c2) {
sub = ;
}
}
if(sub) legal.push_back(i);
}
}
并用count函数计算每行中的1(炮兵数目):
int count(int x) {
int cnt = ;
for(int i = ; i < m; i++) {
if(((x>>i)&) == ) {
cnt++;
}
}
return cnt;
}
接下来设计DP状态和状态转移
每一行的状态受该行前两行摆放状态的影响,因此选择dp[i][j][k]表示可行方案数.dp[i][j][k]表示第i行压缩后状态为j,第i-1行压缩后状态为k的情况下前i行最多放多少个炮兵.同时由于dp[102][1050][1050]会MLE,只有80分不过也知足了, 需要将dp改为滚动数组,将第一维每处均%3即可,只记录前两次的状态
读入地图时把每行压缩成一个二进制数,为了便于后续查找可行状态,读入时H对应1,P对应0. 后续遍历了legal中的合法状态时,若与该行的01表示与运算值不为0,即与地图存在冲突.
状态转移方程为dp[本行][前一行][再前一行] = max{dp[前一行][再前一行][再前一行的前一行] + count(本行) , dp[本行][前一行][再前一行]}
完整的代码如下:
#include <bits/stdc++.h>
using namespace std;
typedef long long ll;
const int maxn = 1e5 + ; int n, m;
string s;
int mp[];
vector<int> legal; // 储存所有的合法01串
int dp[][][]; void init() { // 找到合法的摆放总数
for(int i = ; i < (<<m); i++) { // 1<<m == pow(2,m)
int c1 = , c2 = ; // 3 -> (0011) , 5 -> (0101)
bool sub = ;
for(int j = ; j < m - ; j++) {
if(((i >> j) & c1) == c1) {
sub = ;
}
}
for(int j = ; j < m - ; j++) {
if(((i >> j) & c2) == c2) {
sub = ;
}
}
if(sub) legal.push_back(i);
}
} int count(int x) {
int cnt = ;
for(int i = ; i < m; i++) {
if(((x>>i)&) == ) {
cnt++;
}
}
return cnt;
} int main() {
cin>>n>>m;
init();
// cout<<legal.size()<<endl;
for(int i = ; i <= n + ; i++) { // i初值2 避免越界(需考虑到前两行)
cin>>s;
for(int j = ; j < m; j++)
if(s[j] == 'H') mp[i] |= (<<j);
}
for(int i = ; i <= n + ; i++) {
for(auto step : legal) {
if((step & mp[i]) != ) continue;
for(auto bst : legal) {
if((step & bst) != ) continue;
if((bst & mp[i-]) != ) continue;
for(auto bbst : legal) {
if((step & bbst) != ) continue;
if((bbst & mp[i-]) != ) continue;
if((bbst & bst) != ) continue;
dp[i%][step][bst] = max(dp[(i-)%][bst][bbst] + count(step), dp[i%][step][bst]);
}
}
}
}
int res = ;
for(auto step : legal)
for(auto bst : legal)
res = max(res, dp[(n+)%][step][bst]);
cout<<res<<endl;
}
luogu P2704 炮兵阵地(经典状态压缩DP)的更多相关文章
- poj 1185 炮兵阵地 [经典状态压缩DP]
题意:略. 思路:由于每个大炮射程为2,所以如果对每一行状态压缩的话,能对它造成影响的就是上面的两行. 这里用dp[row][state1][state2]表示第row行状态为state2,第row- ...
- 洛谷 P2704 [NOI2001]炮兵阵地 (状态压缩DP+优化)
题目描述 司令部的将军们打算在NM的网格地图上部署他们的炮兵部队.一个NM的地图由N行M列组成,地图的每一格可能是山地(用"H" 表示),也可能是平原(用"P" ...
- POJ1185炮兵阵地(状态压缩DP)
POJ飞翔.数据弱 ZQOJ飞翔 数据强 Description 司令部的将军们打算在N×M的网格地图上部署他们的炮兵部队.一个N×M的地图由N行M列组成,地图的每一格可能是山地(用"H&q ...
- POJ 1185 炮兵阵地 (状态压缩DP)
题目链接 Description 司令部的将军们打算在NM的网格地图上部署他们的炮兵部队.一个NM的地图由N行M列组成,地图的每一格可能是山地(用"H" 表示),也可能是平原(用& ...
- POJ 1185 炮兵阵地(状态压缩DP)
题解:nState为状态数,state数组为可能的状态 代码: #include <map> #include <set> #include <list> #inc ...
- poj 1185 炮兵阵地(三维状态压缩dP)
题目:http://poj.org/problem?id=1185 思路: d[i][j][k]表示第i行的状态为第k个状态,第i-1行的状态为第j个状态的时候 的炮的数量. 1表示放大炮, 地形状态 ...
- POJ 2411 Mondriaan's Dream [经典状态压缩dp]
题意:略. 思路:这一题开始做的时候完全没有思路,便去看了别人的题解. 首先,对于这个题目解法想有一个初步的了解,请看这里:http://www.2cto.com/kf/201208/146894.h ...
- poj -1185 炮兵阵地 (经典状压dp)
http://poj.org/problem?id=1185 参考博客:http://poj.org/problem?id=1185 大神博客已经讲的很清楚了,注意存状态的时候是从1开始的,所以初始化 ...
- 【Luogu】P2704炮兵阵地(状压DP)
题目链接 话说还真没见过能影响两行的状压.想了半天想出来f数组再多一维就能表示,但是没想到怎么才能不爆空间…… 也是从这道题里学到的一个妙招. 可以把合法状态存到一个数组里,然后用数组下标来映射状态. ...
随机推荐
- Linux 内核内存池
内核中经常进行内存的分配和释放.为了便于数据的频繁分配和回收,通常建立一个空闲链表——内存池.当不使用的已分配的内存时,将其放入内存池中,而不是直接释放掉. Linux内核提供了slab层来管理内存的 ...
- 委托与事件--delegate&&event
委托 访问修饰符 delegate 返回值 委托名(参数); public delegate void NoReturnNoPara(); public void NoReturnNoParaMeth ...
- C语言中二维数组如何申请动态分配内存
C语言中二维数组如何申请动态分配内存: 使用malloc函数,先分配第一维的大小,然后再循环分配每一维的大小 #include <stdio.h> #include <malloc. ...
- Springboot 中AOP的使用
面向切面编程(Aspect Oriented Programming) 是软件编程思想发展到一定阶段的产物,是面向对象编程的有益补充.AOP一般适用于具有横切逻辑的场合,如访问控制.事务管理.性能检测 ...
- awk命令_Linux awk 命令用法详解
本文索引 awk命令格式和选项 awk模式和操作 模式 操作 awk脚本基本结构 awk的工作原理 awk内置变量(预定义变量) 将外部变量值传递给awk awk运算与判断 算术运算符 赋值运算符 逻 ...
- cs/bs
c(客户端)/s服务器:使用前必须安装,更新是,c s同时更新,不能跨频繁太,采用自由协议,相对来说安全. b(浏览器)/s:本质上还是cs ,只是使用了浏览器:如京东,淘宝.无需安装,客户端不需要更 ...
- java 反射获取设置私有成员变量的值
for (Object arg:args) { //处理applicationCode Class<?> argClass = arg.getClass(); Field applicat ...
- hackinglab 种族歧视
首先打开题目 发现是禁止访问的然后打开后台 发现后台也没有什么有用的信息所以用bp抓包 然后修改一下国家语言
- 吴裕雄--天生自然神经网络与深度学习实战Python+Keras+TensorFlow:TensorFlow与神经网络的实现
import tensorflow as tf import numpy as np ''' 初始化运算图,它包含了上节提到的各个运算单元,它将为W,x,b,h构造运算部件,并将它们连接 起来 ''' ...
- 看 C++ Primer 的58页, 讲拷贝时不能忽略 底层const这里的说的原因有点牵强, 这里给出自己的理解
extern const int ci =42; const int * p2 = &ci; extern const int *const p3= p2; int *p= p3; ...