版本:2.4.5
 

1. spark的几种执行方式

1)交互式shell:bin/spark-shell
bin/spark-shell --master <MasterURL> 可配置不同的执行器
 
例如:
bin/spark-shell --master local  # 本地单worker执行
bin/spark-shell --master local[K]  # 本地K个worker执行,K为"*"(星号)时表示本机CPU核数
bin/spark-shell --master local[K, F]  # spark.task.maxFailures = F,单个task失败F次后job失败,即task可以重试最多F-1次
bin/spark-shell --master spark://HOST:PORT  # 连接已有的standalone cluster,standalone模式就是手动部署一个测试用的集群,包含master和slave,可以为单机环境(standalone模式使用说明:https://spark.apache.org/docs/latest/spark-standalone.html)(standalone有client模式和cluster模式。client模式中driver和提交任务的client在一个进程中;而cluster模式中driver在cluster的一个worker中执行,client提交任务后就结束退出了,另外cluster模式还以配置为任务非0退出后立即重跑。)
bin/spark-shell --master spark://host1:port1,host2:port2  # 连接已有的基于ZK的standalone master(有多个master,其中一个是leader,挂了以后其他master恢复状态并上位)
bin/spark-shell --master mesos://host:port  # 连接已有的Mesos cluster(没细看)
bin/spark-shell --master yarn  # 连接一个Yarn集群,可以配置 --deploy-mode client/cluster (yarn的地址从hadoop配置中读取,不需要在命令中指定)
bin/spark-shell --master k8s://host:port  # 连接一个kubernetes集群(目前不支持client模式)
 
2)python: bin/pyspark & bin/spark-submit xx.py
3)R:bin/sparkR & bin/spark-submit xx.R

2. 任务的提交

spark-submit可以将任务提交到一个集群上,并且有统一的接口支持所有cluster manager(standalone、mesos、yarn、kubernetes)。
打包任务所有的依赖到一个jar包中,或者使用--py-files参数提交.py、.zip、.egg文件(多个文件需打包为一个.zip)
 
bin/spark-submit \
--class <main-class> \ # 任务入口
--master <master-url> \ # 支持多种cluster manager
--deploy-mode <deploy-mode> \ # cluster / client,默认为client
--conf <key>=<value> \
... # other options,如--supervise(非0退出立即重启), --verbose(打印debug信息), --jars xx.jar(上传更多的依赖,逗号分隔,不支持目录展开)
<application-jar> \ # main-class来自这个jar包,必须是所有节点都可见的路径,hdfs://或file://
[application-arguments] # 入口函数的参数 bin/spark-submit \
--master <master-url> \
<application-python> \
[application-arguments]
 
* 关于cluster / client模式:
如果任务提交机和worker执行机在同一个物理位置,可以用client模式;如果不再同一个位置,可以用cluster模式,让driver和worker一起执行,减少网络延迟。另外python没有standalone cluster模式。
* 很多配置可以放在spark-defaults.conf中,就不用在spark-submit中重复配置了
 

3. cluster模式

spark任务在集群上作为一个独立的资源集合运行,由driver的SparkContext对象进行管理。为了在集群上运行,SparkContext连接cluster manager让它来分配任务资源。一旦连接,spark从集群节点获取executors,用来进行计算和存储数据。之后,spark发送任务代码(jar或python)到executors中。最后,SparkContext发送tasks到executors执行。
 

 
另外,有几点细节值得一提:
1)每个任务的executors是独占的,在整个任务运行期间存活。这使得不同任务间的资源管理更容易,互不干扰;同时导致同一任务的不同executors无法共享数据,除非写到外部存储中。
2)spark不限定下层的cluster manager种类,只要cluster manager可以获取executor资源,并且executors可以互相通信,就可以在spark中轻松使用。
3)driver在整个生命周期中都需要不断与executors通信,因此必须能够被workers访问。
4)因为driver调度集群中的tasks,他必须在物理上离executors尽可能近,最好在同一个本地网络中。
 
cluster模式即可以从任务层面对资源进行调度(依赖SparkContext/Driver),也可以从集群层面进行调度(依赖cluster manager)。
 
术语表
术语
含义
Application
任务,用户的spark程序,包含位于集群的一个driver和多个executors
Application jar
一个包含用户spark任务和依赖的jar包,不应包含hadoop或spark库
Driver program
任务main()函数和SparkContext所在的进程
Cluster manager
获取集群资源的外部服务
Deploy mode
用来区分driver进程在cluster还是client(即非cluster机器)上执行
Worker node
任何可以跑任务代码的节点
Executor
在worker node上载入并运行了用户任务的一个进程,它执行了tasks并且在内存或存储中保存数据,每个application独占它自己的executors
Task
一组被发送到一个executor的工作
Job
一个多tasks的并行计算单元,对应一个spark操作(例如save, collect)
Stage
每个job可以划分成的更小的tasks集合,类似MapReduce中的map/reduce,stages相互依赖
 
* 看过spark日志应该能够理解这些概念,save、collect等各是一个job,一个job会被划分成多个stages
 

Spark文档阅读之一:Spark Overview的更多相关文章

  1. Spark文档阅读之二:Programming Guides - Quick Start

    Quick Start: https://spark.apache.org/docs/latest/quick-start.html 在Spark 2.0之前,Spark的编程接口为RDD (Resi ...

  2. 转:苹果Xcode帮助文档阅读指南

    一直想写这么一个东西,长期以来我发现很多初学者的问题在于不掌握学习的方法,所以,Xcode那么好的SDK文档摆在那里,对他们也起不到什么太大的作用.从论坛.微博等等地方看到的初学者提出的问题,也暴露出 ...

  3. Django文档阅读-Day1

    Django文档阅读-Day1 Django at a glance Design your model from djano.db import models #数据库操作API位置 class R ...

  4. Django文档阅读-Day3

    Django文档阅读-Day3 Writing your first Django app, part 3 Overview A view is a "type" of Web p ...

  5. Node.js的下载、安装、配置、Hello World、文档阅读

    Node.js的下载.安装.配置.Hello World.文档阅读

  6. 我的Cocos Creator成长之路1环境搭建以及基本的文档阅读

    本人原来一直是做cocos-js和cocos-lua的,应公司发展需要,现转型为creator.会在自己的博客上记录自己的成长之路. 1.文档阅读:(cocos的官方文档) http://docs.c ...

  7. Keras 文档阅读笔记(不定期更新)

    目录 Keras 文档阅读笔记(不定期更新) 模型 Sequential 模型方法 Model 类(函数式 API) 方法 层 关于 Keras 网络层 核心层 卷积层 池化层 循环层 融合层 高级激 ...

  8. Django文档阅读-Day2

    Django文档阅读 - Day2 Writing your first Django app, part 1 You can tell Django is installed and which v ...

  9. Spark Streaming + Flume整合官网文档阅读及运行示例

    1,基于Flume的Push模式(Flume-style Push-based Approach)      Flume被用于在Flume agents之间推送数据.在这种方式下,Spark Stre ...

随机推荐

  1. java导入web项目httpservlet报错

    于是开始了,调错之路. 解决方法:鼠标右击项目工程——>Build Path——>点击comfigure Build Path进入----->选择java Bulid Path--- ...

  2. 如何为Form表单的多个提交按钮指定不同的Action地址?

    这是我很久以前看到的一个技巧,但我忘记在哪里了,当时遇到这样的需求,做了笔记,现在整理成文章分享出来,因为我感觉这个小技巧还是挺有用的,这种应用场景也算比较常见,比如一个表单有"保存&quo ...

  3. 关于mantisBT2.22安装插件Inline column configuration 2.0.0时提示缺少依赖jQuery UI Library 1.8

    1.首先直接下载最新的那个1.12即可 https://github.com/mantisbt-plugins/jQuery-UI/releases 2.上传到mantis的插件目录下:……manti ...

  4. 读Pyqt4简介,带你入门Pyqt4 _001

    PyQt是用来创建GUI应用程序的工具包,它把Python和成功的Qt绑定在一起,Qt库是这个星球上最强大的库之一,如果不是最强大的话. PyQt作为一组Python模块的实现.有超过300个类和超过 ...

  5. BZOJ1003 物流运输 题解

    发现\(n,m\)很小,我们可以先把任意\(2\)天的最短路都给求出来,考虑\(DP\),设\(f[i][j]\)表示\(j+1\)~ \(i\)这几天内走的是最短路线的最优方案,显然最优情况下\(j ...

  6. Docker: GUI 应用,Ubuntu 上如何运行呢?

    操作系统: Ubuntu 18.04 运行镜像: continuumio/anaconda3, based on debian Step 1) 安装 Docker # update the apt p ...

  7. win10和centos7双系统双磁盘引导的实现

    win10和centos7双系统双磁盘引导的实现1.背景:dell5460笔记本电脑M2-120G固态盘无法在bios中引导,新装了M360G固态盘后,考虑把120G固态盘安装centos7.5系统做 ...

  8. JavaScript 引用数据类型

    目录 1. 问题描述 2. 原因分析 3. React 中的引用数据类型 4. 业务场景 5. 参考资料 1. 问题描述 今天在写一个代码题时候, 有一个BUG 导致自己停滞好久, 该BUG 可以描述 ...

  9. ES6背记手册

    ES6规范 阮一峰的ES6在线教程 在线图书--Exploring ES6 ES6 tutorials babel在线教程--https://babeljs.io/docs/en/learn.html ...

  10. 一:HTTP协议解析

    一:HTTP协议解析 1.HTTP协议即超文本传输协议,是一种详细规定了浏览器和万维网服务器之间互相通信的规则,他是万维网交换信息的基础,它允许将HTML(超文本标记语言)文档从web服务器传送到we ...