free【分层图最短路】
free
传送门 来源: 牛客网
题目描述
Your are given an undirect connected graph.Every edge has a cost to pass.You should choose a path from S to T and you need to pay for all the edges in your path. However, you can choose at most k edges in the graph and change their costs to zero in the beginning. Please answer the minimal total cost you need to pay.
输入描述:
The first line contains five integers n,m,S,T,K.
For each of the following m lines, there are three integers a,b,l, meaning there is an edge that costs l between a and b.
n is the number of nodes and m is the number of edges.
输出描述:
An integer meaning the minimal total cost.
输入
3 2 1 3 1
1 2 1
2 3 2
输出
1
备注:
1≤n,m≤103,1≤S,T,a,b≤n,0≤k≤m,1≤l≤106.
Multiple edges and self loops are allowed.
题目描述:
给出n个点,和m条带权边,并且可以选定几条边令其权值为0,但选择的边数最多是k条,求s和t两点的最短距离。
思路:
有k次机会使边的权值为0,是分层最短路的经典问题。
具体方法看下图:(图中序号是从0开始的,下面讲解用从1开始的)

图源:sugarbliss
根据上图可以知道当k=2时,需要建k+1层的图,其中第一层序号是[1,n],往下依次是[1+n,n+n]、[1+2n+n+2*n]
在使用链式前向星存图的时候,要同时存下一列的权值,并将上下两层的权值设为0。
最终最短路的长度出现在每一行的最后,即:n、2*n、3*n。
例如(1,5)=10 要存(1+5,5+5)=10、(1+2*5,5+2*5)=1
(1,5+5+1)=0 等。
(看不懂直接看代码很好理解,找了一下午才找了个感觉好适应的板子)
AC代码:
#include<bits/stdc++.h>
using namespace std;
typedef long long LL;
const int MAX=5e6;
const int INF=0x3f3f3f3f;
LL n,m,s,t,k;
LL head[MAX+5],ans;
LL dis[MAX+5],vis[MAX+5];
struct note{
LL to;
LL len;
LL next;
}edge[MAX+5];
void addedge(LL u,LL v,LL w)
{
edge[ans].to=v;
edge[ans].len=w;
edge[ans].next=head[u];
head[u]=ans++;
}
void init()
{
memset(head,-1,sizeof(head));
ans=0;
}
struct node{
LL u,len;
node(LL a,LL b){
u=b;
len=a;
}
friend bool operator < (node a,node b){
return a.len>b.len;
}
};
priority_queue<node>q;
void diji(LL s)
{
for(LL i=0;i<=(k+1)*n;i++){
dis[i]=INF;
vis[i]=0;
}
dis[s]=0;
q.push(node(0,s));
while(!q.empty()){
int k=q.top().u;
q.pop();
if(vis[k]){
continue;
}
vis[k]=1;
for(LL i=head[k];~i;i=edge[i].next){
int t=edge[i].to;
if((dis[t]>dis[k]+edge[i].len&&edge[i].len!=INF+2)){
dis[t]=dis[k]+edge[i].len;
q.push(node(dis[t],t));
}
}
}
}
int main()
{
scanf("%lld%lld%lld%lld%lld", &n, &m, &s,&t,&k);
init();
while(m--)
{
LL u, v, w;
scanf("%lld%lld%lld",&u, &v, &w);
for(LL i = 0; i <= k; i++)
{
addedge(u + i * n, v + i * n, w);
addedge(v + i * n, u + i * n, w);
if(i != k)
{
addedge(u + i * n, v + (i + 1) * n, 0);
addedge(v + i * n, u + (i + 1) * n, 0);
}
}
}
diji(s);
LL ans = INF;
for(LL i = 0; i <= k; i++)
ans = min(ans,dis[t + i * n]);
printf("%lld\n",ans);
}
free【分层图最短路】的更多相关文章
- poj3635Full Tank?[分层图最短路]
Full Tank? Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 7248 Accepted: 2338 Descri ...
- HDU 5669 线段树优化建图+分层图最短路
用线段树维护建图,即把用线段树把每个区间都标号了,Tree1中子节点有到达父节点的单向边,Tree2中父节点有到达子节点的单向边. 每次将源插入Tree1,汇插入Tree2,中间用临时节点相连.那么T ...
- BZOJ 2763 分层图最短路
突然发现我不会分层图最短路,写一发. 就是同层中用双向边相连,用单向边连下一层 #include <cstdio> #include <algorithm> #include ...
- 【网络流24题】 No.15 汽车加油行驶问题 (分层图最短路i)
[题意] 问题描述:给定一个 N*N 的方形网格,设其左上角为起点◎, 坐标为( 1, 1), X 轴向右为正, Y轴向下为正, 每个方格边长为 1, 如图所示. 一辆汽车从起点◎出发驶向右下角终点▲ ...
- 【网络流24题】 No.14 孤岛营救问题 (分层图最短路)
[题意] 1944 年,特种兵麦克接到国防部的命令,要求立即赶赴太平洋上的一个孤岛, 营救被敌军俘虏的大兵瑞恩. 瑞恩被关押在一个迷宫里, 迷宫地形复杂, 但幸好麦克得到了迷宫的地形图. 迷宫的外形是 ...
- BZOJ_2662_[BeiJing wc2012]冻结_分层图最短路
BZOJ_2662_[BeiJing wc2012]冻结_分层图最短路 Description “我要成为魔法少女!” “那么,以灵魂为代价,你希望得到什么?” “我要将有关魔法和奇迹的一切, ...
- BZOJ_1579_[Usaco2009 Feb]Revamping Trails 道路升级_分层图最短路
BZOJ_1579_[Usaco2009 Feb]Revamping Trails 道路升级_分层图最短路 Description 每天,农夫John需要经过一些道路去检查牛棚N里面的牛. 农场上有M ...
- Nowcoder contest 370H Rinne Loves Dynamic Graph【分层图最短路】
<题目链接> 题目大意:Rinne 学到了一个新的奇妙的东西叫做动态图,这里的动态图的定义是边权可以随着操作而变动的图.当我们在这个图上经过一条边的时候,这个图上所有边的边权都会发生变动. ...
- ACM-ICPC 2018 南京赛区网络预赛 L 【分层图最短路】
<题目链接> 题目大意: 有N个城市,这些城市之间有M条有向边,每条边有权值,能够选择K条边 边权置为0,求1到N的最短距离. 解题分析: 分层图最短路模板题,将该图看成 K+1 层图,然 ...
- BZOJ2662[BeiJing wc2012]冻结——分层图最短路
题目描述 “我要成为魔法少女!” “那么,以灵魂为代价,你希望得到什么?” “我要将有关魔法和奇迹的一切,封印于卡片之中„„” 在这个愿望被实现以后的世界里,人们享受着魔法卡片(Spe ...
随机推荐
- 用window.print()打印如何去掉页眉和页脚
用window.print()打印如何去掉页眉和页脚 2007-07-12 11:44:52| 分类: javascript 知识|举报|字号 订阅 <script language= ...
- PL/SQL语言语法
一.前言 SQL全称是"结构化查询语言(Structured Query Language)",而PL/SQL是过程语言(Procedure Language),是对SQL的扩展. ...
- Flutter 使用Navigator进行局部跳转页面
老孟导读:Navigator组件使用的频率不是很高,但在一些场景下非常适用,比如局部表单多页填写.底部导航一直存在,每个tab各自导航场景. Navigator 是管理路由的控件,通常情况下直接使用N ...
- [工具-006] C#如何模拟发包登录
最近接到一个任务,就是模拟某个贴吧的登录发帖功能,我的思路是通过IE浏览器的工具对登陆操作进行抓包,记录登录时候请求的URL,请求方式,请求正文等信息进行模拟的发包. 1.首先我们要到登陆页面,以摇篮 ...
- 【Python】自己写日志功能
Python有自带的logging模块,用于日志记录,功能很强大,但不好用,使用挺麻烦的,而且发现了几个bug,调用了一个logger.warning()一次,结果日志文件中出现了n行记录,且逐渐变成 ...
- python库-collections模块Counter类
Counter类主要是用来跟踪值出现的次数.它是一个无序的容器类型,以字典的键值对形式存储,其中元素作为key,其计数作为value. demo: all_words = [] # 列表里面是汉字(可 ...
- jchdl - GSL实例 - Sub(二的补码实现)
https://mp.weixin.qq.com/s/10fgjqPt2pRvIJzjDGYgBg 概念辨析 <IC-二进制, 自然数, 有符号数>:https://mp.weix ...
- GTA5侠盗猎车5中文版破解版绿色版汉化版迅雷下载地址种子实测可用
GTA5(侠盗猎车5)中文版下载地址(实测可用) 迅雷下载地址:https://www.90pan.com/b1548988 一定要关闭安全软件并且加入白名单 实测通过,关闭杀毒软件可以完美运行,最好 ...
- 聚类算法之k-均值聚类
k-均值聚类算法 优点:容易实现 缺点:可能收敛到局部最小值,在大规模数据集上收敛较慢 适用数据类型:数值型数据 其工作流程:首先,随机确定k个初始点作为质心,然后将数据集中的每个点分配到一个簇中,具 ...
- Java实现 LeetCode 701 二叉搜索树中的插入操作(遍历树)
701. 二叉搜索树中的插入操作 给定二叉搜索树(BST)的根节点和要插入树中的值,将值插入二叉搜索树. 返回插入后二叉搜索树的根节点. 保证原始二叉搜索树中不存在新值. 注意,可能存在多种有效的插入 ...