@description@

Picks博士观察完金星凌日后,设计了一个复杂的电阻器。为了简化题目,题目中的常数与现实世界有所不同。

这个电阻器内有编号为 1∼n 的 n 个独立水箱,水箱呈圆柱形,底面积为 1 \(m^2\),每个水箱在顶部和底部各有一个阀门,可以让水以 1 \(m^3/s\) 的流量通过,每个水箱的上阀门接水龙头,可以无限供应水,下阀门不接东西,可以让水流出。水箱顶部和底部都有一个接口,水的电阻率为 1 Ω⋅m。

水箱的高度足够高,有一个导电浮标浮在水面上,通过导线与水箱顶的接口相连。一开始时第 i 个水箱中有 \(a_i\) \(m^3\) 的水。

Picks博士接下来就需要对这个复杂的电阻器进行调试。他会进行以下五种操作。

1、打开编号在 [l,r] 中的所有水箱的上方阀门 x 秒,然后关上它们的上方阀门。

2、打开编号在 [l,r] 中的所有水箱的下方阀门 x 秒,然后关上它们的下方阀门。

3、将编号在 [l,r] 中的所有水箱的下方阀门与大海通过连通器以一定方式相连,使得这些水箱中都恰拥有 \(x\) \(m^3\) 的水,然后关上它们的下方阀门,撤去连通器。

4、在第 y 个水箱的上下方接口处接上一个电动势为 1 V 的电源,电源没有内阻,Picks博士会测量出通过电源的电流大小,之后撤去该电源。

5、由于水浸泡过的地方会留下明显的水渍而没有被水浸泡过的地方不会有,Picks博士可以据此测量出此时第 y 个水箱的水渍高度,以推断曾经最多有多少水,节约他的建造成本。

现在,他请你来帮他做预实验,你能告诉他每次测量得到的电流大小以及测量得到的最多的水量是多少吗?

原题传送门。

@solution@

来翻译一遍题目的操作:

t = 1 : [li, ri] 中的所有 aj 变成 aj + xi。

t = 2 : [li, ri] 中的所有 aj 变成 max(aj - xi, 0)。

t = 3 : [li, ri] 中的所有 aj 变成 xi。

t = 4 : 询问 ayi。

t = 5 : 询问 ayi 在历史上的最大值。

可以发现 1 操作也可写成 max(aj + xi, 0),3 操作也可写成 max(-∞, xi),这样所有修改的形式就统一成 max(x + a, b) 了。

两个修改标记的复合为 max(max(x + a1, b1) + a2, b2) = max(x + max(a1, a2), max(b1 + a2, b2))。

注意到这个复合运算满足结合律(但不满足交换律),所以可以用线段树维护。

如何维护历史最大值?我们尝试对两个修改标记取 max:max(max(x + a1, b1), max(x + a2, b2)) = max(x + max(a1, a2), max(b1, b2)),发现是可行的。

于是我们再在每个结点处维护一个历史最大未下传标记即可。

@accepted code@

#include <cstdio>
#include <algorithm>
using namespace std; typedef long long ll; const int MAXN = 500000;
const ll INF = 1E16; ll add(ll x, ll y) {
return x + y > INF ? INF : (x + y < -INF ? -INF : x + y);
}
struct tag{
ll a, b; tag() {}
tag(ll _a, ll _b) : a(_a), b(_b) {}
friend tag add(tag a, tag b) {
return tag(add(a.a, b.a), max(add(a.b, b.a), b.b));
}// max(max(x + a.a, a.b) + b.a, b.b)
friend tag max(tag a, tag b) {
return tag(max(a.a, b.a), max(a.b, b.b));
}// max(max(x + a.a, a.b), max(x + b.a, b.b))
}; int a[MAXN + 5];
struct segtree{
#define lch (x << 1)
#define rch (x << 1 | 1) int le[4*MAXN + 5], ri[4*MAXN + 5];
tag tg[4*MAXN + 5], mt[4*MAXN + 5];
void build(int x, int l, int r) {
le[x] = l, ri[x] = r, tg[x] = tag(0, 0);
if( l == r ) {
tg[x] = mt[x] = tag(a[l], 0);
return ;
}
int m = (l + r) >> 1;
build(lch, l, m), build(rch, m + 1, r);
}
void maintain(int x, tag nwt, tag mxt) {
mt[x] = max(mt[x], add(tg[x], mxt));
tg[x] = add(tg[x], nwt);
}
void pushdown(int x) {
if( tg[x].a || tg[x].b ) {
maintain(lch, tg[x], mt[x]);
maintain(rch, tg[x], mt[x]);
tg[x] = mt[x] = tag(0, 0);
}
}
void modify(int x, int l, int r, tag t) {
if( l > ri[x] || r < le[x] )
return ;
if( l <= le[x] && ri[x] <= r ) {
maintain(x, t, t);
return ;
}
pushdown(x);
modify(lch, l, r, t), modify(rch, l, r, t);
}
tag query(int x, int p, int type) {
if( le[x] == ri[x] ) return (type == 4 ? tg[x] : mt[x]);
int m = (le[x] + ri[x]) >> 1;
pushdown(x);
if( p <= m ) return query(lch, p, type);
else return query(rch, p, type);
}
}T; int main() {
int n, m; scanf("%d%d", &n, &m);
for(int i=1;i<=n;i++) scanf("%d", &a[i]);
T.build(1, 1, n);
for(int i=1;i<=m;i++) {
int t; scanf("%d", &t);
if( t <= 3 ) {
int l, r, k; tag p; scanf("%d%d%d", &l, &r, &k);
if( t == 1 ) p = tag(k, 0);
if( t == 2 ) p = tag(-k, 0);
if( t == 3 ) p = tag(-INF, k);
T.modify(1, l, r, p);
}
else {
int y; scanf("%d", &y);
tag p = T.query(1, y, t);
printf("%lld\n", max(p.a, p.b));
}
}
} /*
t = 1 : [li, ri] + x
t = 2 : max([li, ri] - x, 0)
t = 3 : [li, ri] = x
t = 4 : query ax
t = 5 : query history max{ax}
*/

@details@

听说是吉如一线段树(segment tree beats)的一部分来着,不过不是很清楚。

@uoj - 164@ 【清华集训2015】V的更多相关文章

  1. UOJ #164 [清华集训2015]V (线段树)

    题目链接 http://uoj.ac/problem/164 题解 神仙线段树题. 首先赋值操作可以等价于减掉正无穷再加上\(x\). 假设某个位置从前到后的操作序列是: \(x_1,x_2,..., ...

  2. 清华集训2015 V

    #164. [清华集训2015]V http://uoj.ac/problem/164 统计 描述 提交 自定义测试 Picks博士观察完金星凌日后,设计了一个复杂的电阻器.为了简化题目,题目中的常数 ...

  3. 【uoj#164】[清华集训2015]V 线段树维护历史最值

    题目描述 给你一个长度为 $n$ 的序列,支持五种操作: $1\ l\ r\ x$ :将 $[l,r]$ 内的数加上 $x$ :$2\ l\ r\ x$ :将 $[l,r]$ 内的数减去 $x$ ,并 ...

  4. 「清华集训2015」V

    「清华集训2015」V 题目大意: 你有一个序列,你需要支持区间加一个数并对 \(0\) 取 \(\max\),区间赋值,查询单点的值以及单点历史最大值. 解题思路: 观察发现,每一种修改操作都可以用 ...

  5. [UOJ#274][清华集训2016]温暖会指引我们前行

    [UOJ#274][清华集训2016]温暖会指引我们前行 试题描述 寒冬又一次肆虐了北国大地 无情的北风穿透了人们御寒的衣物 可怜虫们在冬夜中发出无助的哀嚎 “冻死宝宝了!” 这时 远处的天边出现了一 ...

  6. UOJ #164. 【清华集训2015】V | 线段树

    题目链接 UOJ #164 题解 首先,这道题有三种询问:区间加.区间减(减完对\(0\)取\(\max\)).区间修改. 可以用一种标记来表示--标记\((a, b)\)表示把原来的值加上\(a\) ...

  7. UOJ#164:【清华集训2015】V

    浅谈区间最值操作与历史最值问题:https://www.cnblogs.com/AKMer/p/10225100.html 题目传送门:http://uoj.ac/problem/164 论文题.论文 ...

  8. 2018.07.28 uoj#164. 【清华集训2015】V(线段树)

    传送门 线段树好题. 要求支持的操作: 1.区间变成max(xi−a,0)" role="presentation" style="position: rela ...

  9. UOJ #164 【清华集训2015】 V

    题目链接:V 这道题由于是单点询问,所以异常好写. 注意到每种修改操作都可以用一个标记\((a,b)\)表示.标记\((a,b)\)的意义就是\(x= \max\{x+a,b\}\) 同时这种标记也是 ...

随机推荐

  1. Pyqt5_QfileDialog

    QfileDialog getOpenFileName getSaveFileName getExistingDirectory getOpenFileName: 就是调用窗口来读取用户选取的文件路径 ...

  2. MySQL浮点数和定点数

    MySQL 分为两种方式:浮点数和定点数.浮点数包括 float(单精度)和 double(双精度),而定点数则只有 decimal 一种表示.定点数在 MySQL 内部以字符串形式存放,比浮点数更精 ...

  3. 13.Java连接Redis_Jedis_事务

    Jedis事务我们使用JDBC连接Mysql的时候,每次执行sql语句之前,都需要开启事务:在MyBatis中,也需要使用openSession()来获取session事务对象,来进行sql执行.查询 ...

  4. Oracle 利用PLSQL一分钟将表结构(PROJ),从A库移植到B库,一分钟将A库中表数据移植到B库中!!!

    导读(苦恼) 做多个项目的时候,可能会有这样的需求,需要把A项目中的某些功能移植到B项目上:移植途中,牵扯到顺便把表也要一块移植过去,若表字段较少,那还好,可能耗费10分钟就搞完了,万一碰上几十个字段 ...

  5. AdaBoost理解

    AdaBoost是一种准确性很高的分类算法,它的原理是把K个弱分类器(弱分类器的意思是该分类器的准确性较低),通过一定的组合(一般是线性加权进行组合),组合成一个强的分类器,提高分类的准确性. 因此, ...

  6. 01 . Prometheus简介及安装配置Grafana

    Promethus简介 Prometheus受启发于Google的Brogmon监控系统(相似的Kubernetes是从Google的Brog系统演变而来),从2012年开始由前Google工程师在S ...

  7. tomcat session漏洞反序列化详解

    1. 条件1)攻击者可以控制服务器上的文件名/文件内容2)tomcat context配置了persistencemanager的fileSotre3) persistenceManager 配置了s ...

  8. Rocket - util - Timer

    https://mp.weixin.qq.com/s/Z4JJhZ_jL1lqF1nf_orq9A   简单介绍Timer的实现.   ​​   1. 基本功能   实现定时器的功能.   2. Ti ...

  9. 蓝桥杯 算法训练 P0505(Java解法)

    一个整数n的阶乘可以写成n!,它表示从1到n这n个整数的乘积.阶乘的增长速度非常快,例如,13!就已经比较大了,已经无法存放在一个整型变量中:而35!就更大了,它已经无法存放在一个浮点型变量中.因此, ...

  10. Java实现 LeetCode 514 自由之路

    514. 自由之路 视频游戏"辐射4"中,任务"通向自由"要求玩家到达名为"Freedom Trail Ring"的金属表盘,并使用表盘拼写 ...