@uoj - 164@ 【清华集训2015】V
@description@
Picks博士观察完金星凌日后,设计了一个复杂的电阻器。为了简化题目,题目中的常数与现实世界有所不同。
这个电阻器内有编号为 1∼n 的 n 个独立水箱,水箱呈圆柱形,底面积为 1 \(m^2\),每个水箱在顶部和底部各有一个阀门,可以让水以 1 \(m^3/s\) 的流量通过,每个水箱的上阀门接水龙头,可以无限供应水,下阀门不接东西,可以让水流出。水箱顶部和底部都有一个接口,水的电阻率为 1 Ω⋅m。
水箱的高度足够高,有一个导电浮标浮在水面上,通过导线与水箱顶的接口相连。一开始时第 i 个水箱中有 \(a_i\) \(m^3\) 的水。
Picks博士接下来就需要对这个复杂的电阻器进行调试。他会进行以下五种操作。
1、打开编号在 [l,r] 中的所有水箱的上方阀门 x 秒,然后关上它们的上方阀门。
2、打开编号在 [l,r] 中的所有水箱的下方阀门 x 秒,然后关上它们的下方阀门。
3、将编号在 [l,r] 中的所有水箱的下方阀门与大海通过连通器以一定方式相连,使得这些水箱中都恰拥有 \(x\) \(m^3\) 的水,然后关上它们的下方阀门,撤去连通器。
4、在第 y 个水箱的上下方接口处接上一个电动势为 1 V 的电源,电源没有内阻,Picks博士会测量出通过电源的电流大小,之后撤去该电源。
5、由于水浸泡过的地方会留下明显的水渍而没有被水浸泡过的地方不会有,Picks博士可以据此测量出此时第 y 个水箱的水渍高度,以推断曾经最多有多少水,节约他的建造成本。
现在,他请你来帮他做预实验,你能告诉他每次测量得到的电流大小以及测量得到的最多的水量是多少吗?
@solution@
来翻译一遍题目的操作:
t = 1 : [li, ri] 中的所有 aj 变成 aj + xi。
t = 2 : [li, ri] 中的所有 aj 变成 max(aj - xi, 0)。
t = 3 : [li, ri] 中的所有 aj 变成 xi。
t = 4 : 询问 ayi。
t = 5 : 询问 ayi 在历史上的最大值。
可以发现 1 操作也可写成 max(aj + xi, 0),3 操作也可写成 max(-∞, xi),这样所有修改的形式就统一成 max(x + a, b) 了。
两个修改标记的复合为 max(max(x + a1, b1) + a2, b2) = max(x + max(a1, a2), max(b1 + a2, b2))。
注意到这个复合运算满足结合律(但不满足交换律),所以可以用线段树维护。
如何维护历史最大值?我们尝试对两个修改标记取 max:max(max(x + a1, b1), max(x + a2, b2)) = max(x + max(a1, a2), max(b1, b2)),发现是可行的。
于是我们再在每个结点处维护一个历史最大未下传标记即可。
@accepted code@
#include <cstdio>
#include <algorithm>
using namespace std;
typedef long long ll;
const int MAXN = 500000;
const ll INF = 1E16;
ll add(ll x, ll y) {
return x + y > INF ? INF : (x + y < -INF ? -INF : x + y);
}
struct tag{
ll a, b; tag() {}
tag(ll _a, ll _b) : a(_a), b(_b) {}
friend tag add(tag a, tag b) {
return tag(add(a.a, b.a), max(add(a.b, b.a), b.b));
}// max(max(x + a.a, a.b) + b.a, b.b)
friend tag max(tag a, tag b) {
return tag(max(a.a, b.a), max(a.b, b.b));
}// max(max(x + a.a, a.b), max(x + b.a, b.b))
};
int a[MAXN + 5];
struct segtree{
#define lch (x << 1)
#define rch (x << 1 | 1)
int le[4*MAXN + 5], ri[4*MAXN + 5];
tag tg[4*MAXN + 5], mt[4*MAXN + 5];
void build(int x, int l, int r) {
le[x] = l, ri[x] = r, tg[x] = tag(0, 0);
if( l == r ) {
tg[x] = mt[x] = tag(a[l], 0);
return ;
}
int m = (l + r) >> 1;
build(lch, l, m), build(rch, m + 1, r);
}
void maintain(int x, tag nwt, tag mxt) {
mt[x] = max(mt[x], add(tg[x], mxt));
tg[x] = add(tg[x], nwt);
}
void pushdown(int x) {
if( tg[x].a || tg[x].b ) {
maintain(lch, tg[x], mt[x]);
maintain(rch, tg[x], mt[x]);
tg[x] = mt[x] = tag(0, 0);
}
}
void modify(int x, int l, int r, tag t) {
if( l > ri[x] || r < le[x] )
return ;
if( l <= le[x] && ri[x] <= r ) {
maintain(x, t, t);
return ;
}
pushdown(x);
modify(lch, l, r, t), modify(rch, l, r, t);
}
tag query(int x, int p, int type) {
if( le[x] == ri[x] ) return (type == 4 ? tg[x] : mt[x]);
int m = (le[x] + ri[x]) >> 1;
pushdown(x);
if( p <= m ) return query(lch, p, type);
else return query(rch, p, type);
}
}T;
int main() {
int n, m; scanf("%d%d", &n, &m);
for(int i=1;i<=n;i++) scanf("%d", &a[i]);
T.build(1, 1, n);
for(int i=1;i<=m;i++) {
int t; scanf("%d", &t);
if( t <= 3 ) {
int l, r, k; tag p; scanf("%d%d%d", &l, &r, &k);
if( t == 1 ) p = tag(k, 0);
if( t == 2 ) p = tag(-k, 0);
if( t == 3 ) p = tag(-INF, k);
T.modify(1, l, r, p);
}
else {
int y; scanf("%d", &y);
tag p = T.query(1, y, t);
printf("%lld\n", max(p.a, p.b));
}
}
}
/*
t = 1 : [li, ri] + x
t = 2 : max([li, ri] - x, 0)
t = 3 : [li, ri] = x
t = 4 : query ax
t = 5 : query history max{ax}
*/
@details@
听说是吉如一线段树(segment tree beats)的一部分来着,不过不是很清楚。
@uoj - 164@ 【清华集训2015】V的更多相关文章
- UOJ #164 [清华集训2015]V (线段树)
题目链接 http://uoj.ac/problem/164 题解 神仙线段树题. 首先赋值操作可以等价于减掉正无穷再加上\(x\). 假设某个位置从前到后的操作序列是: \(x_1,x_2,..., ...
- 清华集训2015 V
#164. [清华集训2015]V http://uoj.ac/problem/164 统计 描述 提交 自定义测试 Picks博士观察完金星凌日后,设计了一个复杂的电阻器.为了简化题目,题目中的常数 ...
- 【uoj#164】[清华集训2015]V 线段树维护历史最值
题目描述 给你一个长度为 $n$ 的序列,支持五种操作: $1\ l\ r\ x$ :将 $[l,r]$ 内的数加上 $x$ :$2\ l\ r\ x$ :将 $[l,r]$ 内的数减去 $x$ ,并 ...
- 「清华集训2015」V
「清华集训2015」V 题目大意: 你有一个序列,你需要支持区间加一个数并对 \(0\) 取 \(\max\),区间赋值,查询单点的值以及单点历史最大值. 解题思路: 观察发现,每一种修改操作都可以用 ...
- [UOJ#274][清华集训2016]温暖会指引我们前行
[UOJ#274][清华集训2016]温暖会指引我们前行 试题描述 寒冬又一次肆虐了北国大地 无情的北风穿透了人们御寒的衣物 可怜虫们在冬夜中发出无助的哀嚎 “冻死宝宝了!” 这时 远处的天边出现了一 ...
- UOJ #164. 【清华集训2015】V | 线段树
题目链接 UOJ #164 题解 首先,这道题有三种询问:区间加.区间减(减完对\(0\)取\(\max\)).区间修改. 可以用一种标记来表示--标记\((a, b)\)表示把原来的值加上\(a\) ...
- UOJ#164:【清华集训2015】V
浅谈区间最值操作与历史最值问题:https://www.cnblogs.com/AKMer/p/10225100.html 题目传送门:http://uoj.ac/problem/164 论文题.论文 ...
- 2018.07.28 uoj#164. 【清华集训2015】V(线段树)
传送门 线段树好题. 要求支持的操作: 1.区间变成max(xi−a,0)" role="presentation" style="position: rela ...
- UOJ #164 【清华集训2015】 V
题目链接:V 这道题由于是单点询问,所以异常好写. 注意到每种修改操作都可以用一个标记\((a,b)\)表示.标记\((a,b)\)的意义就是\(x= \max\{x+a,b\}\) 同时这种标记也是 ...
随机推荐
- poj1780欧拉回路
转载 #include<cstdio> #include<cstring> ; bool vis[N]; char ans[N]; int main() { int n; wh ...
- ExtJS动态隐藏Panel中按钮
1.直接隐藏 在bbar的按钮中直接加属性:hidden : true 属性,可隐藏:disabled : true 属性,可禁用 在columns列中直接加属性:hidden : true 属性,可 ...
- JVM中的垃圾收集
引用计数(Reference Counting) 循环引用问题 标记清除(Mark and Sweep) 内存池(Memory Pools) Eden 是内存中的一个区域, 用来分配新创建的对象 . ...
- Python一键获取日漫Top100榜单电影信息
最近看到一个 UP 主做的视频,使用可视化动态图,把目前播放量最多的 UP 主一一列出来,结果第一名是哔哩哔哩番剧,第一名的播放量是第二名近 10 倍. B站的番剧数量,也是相对其他平台比较多的,而且 ...
- Jumpserver-跳板机的搭建
Jumpserver堡垒机 一.Jumpserver堡垒机概述-部署Jumpserver运行环境 01 跳板机概述 跳板机就是一台服务器,开发或运维人员在维护过程中首先要统一登录到这台服务器,然后再登 ...
- pytest跳过指定的测试或模块
参考Allure官方文档,pytest官方文档 实现setup/teardown 1.运行带指定标记的测试 @pytest.mark.tags ,这里的tags可以自定义 命令行执行:pytest - ...
- SQL查找大小为n的连续区间
数据准备 create table sequence ( seq int not null primary key ); insert into values(3); insert into valu ...
- Vue父子组件传值以及父调子方法、子调父方法
稍微总结了一下Vue中父子间传值以及相互调方法的问题,非常基础.希望可以帮到你!先来个最常用的,直接上代码: 1.父传值给子组件 父组件: <template> <div> & ...
- Java实现 蓝桥杯VIP 算法提高 我们的征途是星辰大海
算法提高 我们的征途是星辰大海 时间限制:1.0s 内存限制:256.0MB 最新的火星探测机器人curiosity被困在了一个二维迷宫里,迷宫由一个个方格组成. 共有四种方格: '.' 代表空地,c ...
- Java实现 LeetCode 7整数反转
7. 整数反转 给出一个 32 位的有符号整数,你需要将这个整数中每位上的数字进行反转. 示例 1: 输入: 123 输出: 321 示例 2: 输入: -123 输出: -321 示例 3: 输入: ...