一、

利用 jieba 进行分词,关键词提取

利用gensim下面的corpora,models,similarities 进行语料库建立,模型tfidf算法,稀疏矩阵相似度分析

# -*- coding: utf-8 -*-

import jieba
from gensim import corpora, models, similarities
from collections import defaultdict # 定义文件目录
work_dir = "D:/workspace/PythonSdy/data"
f1 = work_dir + "/t1.txt"
f2 = work_dir + "/t2.txt"
# 读取文件内容
c1 = open(f1, encoding='utf-8').read()
c2 = open(f2, encoding='utf-8').read()
# jieba 进行分词
data1 = jieba.cut(c1)
data2 = jieba.cut(c2) data11 = ""
# 获取分词内容
for i in data1:
data11 += i + " "
data21 = ""
# 获取分词内容
for i in data2:
data21 += i + " " doc1 = [data11, data21]
# print(doc1) t1 = [[word for word in doc.split()]
for doc in doc1]
# print(t1) # # frequence频率
freq = defaultdict(int)
for i in t1:
for j in i:
freq[j] += 1
# print(freq) # 限制词频
t2 = [[token for token in k if freq[j] >= 3]
for k in t1]
print(t2) # corpora语料库建立字典
dic1 = corpora.Dictionary(t2)
dic1.save(work_dir + "/yuliaoku.txt") # 对比文件
f3 = work_dir + "/t3.txt"
c3 = open(f3, encoding='utf-8').read()
# jieba 进行分词
data3 = jieba.cut(c3)
data31 = ""
for i in data3:
data31 += i + " "
new_doc = data31
print(new_doc) # doc2bow把文件变成一个稀疏向量
new_vec = dic1.doc2bow(new_doc.split())
# 对字典进行doc2bow处理,得到新语料库
new_corpor = [dic1.doc2bow(t3) for t3 in t2]
tfidf = models.TfidfModel(new_corpor) # 特征数
featurenum = len(dic1.token2id.keys()) # similarities 相似之处
# SparseMatrixSimilarity 稀疏矩阵相似度
idx = similarities.SparseMatrixSimilarity(tfidf[new_corpor], num_features=featurenum)
sims = idx[tfidf[new_vec]]
print(sims)

二、轻量级数据文本相似的处理

Lsimodel训练模型

import jieba
from gensim import corpora
from gensim import models
from gensim import similarities from settings import MONGO_DB content_list = [] # 放数据库中的内容
for i in MONGO_DB.content.find(): # 查数据库内容,生成器
content_list.append(i.get("title")) # 制作语料库
l1 = content_list
all_doc_list = [] # 存放jieba分词列表
for doc in l1:
doc_list = [word for word in jieba.cut_for_search(doc)]
all_doc_list.append(doc_list)
dictionary = corpora.Dictionary(all_doc_list) #制作词袋 例如: {'什么': 0, '你': 1, '名字': 2, '是': 3, '的': 4, '了': 5, '今年': 6}
corpus = [dictionary.doc2bow(doc) for doc in all_doc_list] # [(1, 1), (5, 1), (6, 1), (7, 1)] bow模型语料库
lsi = models.LsiModel(corpus) # 根据语料库训练Lsi模型,向量表示
# [5*5,6*4,2*3....] # 百度ai识别的用户语音消息 ,jieba分词 --> 语料库
def my_gensim(ai_msg):
doc_test_list = [word for word in jieba.cut_for_search(ai_msg)] # 分词
doc_test_vec = dictionary.doc2bow(doc_test_list) # bow 对象语料库 # 计算文本相似度
# 稀疏矩阵相似度 将主语料库corpus的训练结果 作为初始值
index = similarities.SparseMatrixSimilarity(lsi[corpus], num_features=len(dictionary.keys()))
# 将 语料库doc_test_vec 在 语料库corpus的训练结果 中的 向量表示 ,与 语料库corpus的 向量表示 做矩阵相似度计算
sim = index[lsi[doc_test_vec]]
print(sim,enumerate(sim))
cc = sorted(enumerate(sim), key=lambda item: -item[1]) # 按相似度排序
print(cc)
if cc[0][1] > 0.58:
text = l1[cc[0][0]]
else:
text = None return text print(my_gensim('xiaoxiao 小的'))

NLP之gensim的更多相关文章

  1. NLP:Gensim库之word2vec

    Gensim是一款开源的第三方Python工具包,用于从原始的非结构化的文本中,无监督地学习到文本隐层的主题向量表达.它支持包括TF-IDF,LSA,LDA,和word2vec在内的多种主题模型算法, ...

  2. Jasper语音助理

    1. 介绍 Jasper是一款基于树莓派的开源语音控制助理, 使用Python语言开发. Jasper工作原理主要是设备被动监听麦克风, 当收到唤醒关键字时进入主动监听模式, 此时收到语音指令后进行语 ...

  3. 中文分词库及NLP介绍,jieba,gensim的一些介绍

    六款中文分词软件介绍: https://blog.csdn.net/u010883226/article/details/80731583 里面有jieba, pyltp什么的.另外下面这个博客有不少 ...

  4. [Algorithm & NLP] 文本深度表示模型——word2vec&doc2vec词向量模型

    深度学习掀开了机器学习的新篇章,目前深度学习应用于图像和语音已经产生了突破性的研究进展.深度学习一直被人们推崇为一种类似于人脑结构的人工智能算法,那为什么深度学习在语义分析领域仍然没有实质性的进展呢? ...

  5. 【NLP】Python实例:申报项目查重系统设计与实现

    Python实例:申报项目查重系统设计与实现 作者:白宁超 2017年5月18日17:51:37 摘要:关于查重系统很多人并不陌生,无论本科还是硕博毕业都不可避免涉及论文查重问题,这也对学术不正之风起 ...

  6. 用gensim学习word2vec

    在word2vec原理篇中,我们对word2vec的两种模型CBOW和Skip-Gram,以及两种解法Hierarchical Softmax和Negative Sampling做了总结.这里我们就从 ...

  7. NLP+词法系列(二)︱中文分词技术简述、深度学习分词实践(CIPS2016、超多案例)

    摘录自:CIPS2016 中文信息处理报告<第一章 词法和句法分析研究进展.现状及趋势>P4 CIPS2016 中文信息处理报告下载链接:http://cips-upload.bj.bce ...

  8. NLP︱词向量经验总结(功能作用、高维可视化、R语言实现、大规模语料、延伸拓展)

    R语言由于效率问题,实现自然语言处理的分析会受到一定的影响,如何提高效率以及提升词向量的精度是在当前软件环境下,比较需要解决的问题. 笔者认为还存在的问题有: 1.如何在R语言环境下,大规模语料提高运 ...

  9. pypinyin, jieba分词与Gensim

    一 . pypinyin from pypinyin import lazy_pinyin, TONE, TONE2, TONE3 word = '孙悟空' print(lazy_pinyin(wor ...

随机推荐

  1. SQL 函数 排序 等基础操作 DDL DML DQL 用法和<> <=>等

    sql基础汇总 --根据函数别名排序 --排序规则,默认是升序 sleect LENGTH(NAME) nameLength from user ORDER BY nameLength DESC -- ...

  2. 吴裕雄 python 神经网络——TensorFlow 花瓣分类与迁移学习(4)

    # -*- coding: utf-8 -*- import glob import os.path import numpy as np import tensorflow as tf from t ...

  3. java课极限测试

    在临近国庆的9月30号补课日 碰到了惨绝人寰的java课极限测试 我从下午两点半做到晚上九点 不得不说人在烦躁的时候是真的没办法写代码的 根本不想思考也不想学习.最后的几个小时基本就是在叹息和坐着.也 ...

  4. 【PAT甲级】1045 Favorite Color Stripe (30 分)(DP)

    题意: 输入一个正整数N(<=200),代表颜色总数,接下来输入一个正整数M(<=200),代表喜爱的颜色数量,接着输入M个正整数表示喜爱颜色的编号(同一颜色不会出现两次),接下来输入一个 ...

  5. springcloud-zuul初级篇

    一 前言 zuul路由网关的核心作用是用于后台服务的统一管理:由于微服务是部署在多台服务器上,服务器的ip地址并不能统一,我们需要暴露一个统一的ip地址给前台使用进行接口调用:zuul就是起到路由网关 ...

  6. ThinkPHP6源码分析之应用初始化

    ThinkPHP6 源码分析之应用初始化 官方群点击此处. App Construct 先来看看在 __construct 中做了什么,基本任何框架都会在这里做一些基本的操作,也就是从这里开始延伸出去 ...

  7. C++关键字总结【新手必学】

    const 关键字——常量const 与definedefine是预编译器的编译指令,它从C语言兼容下来,工作方式与文本编辑器中的全局搜索和替换相似.define定义的常量的意义在它开始的地方持续到文 ...

  8. 变量的注释(python3.6以后的功能)

    有时候导入模块,然后使用这个变量的时候,却没点出后面的智能提示.用以下方法可以解决:https://www.cnblogs.com/xieqiankun/p/type_hints_in_python3 ...

  9. 让 el-dialog 居中,并且内容多的时候内部可以滚动

    .el-dialog { position: absolute; top: 50%; left: 50%; margin: 0 !important; transform: translate(-50 ...

  10. (踩过的坑)使用Github Page搭建个人博客

    最近需要搭建一个网站,作为导航网址,但是自己的域名备案还要等上几天,就想着有没有别的办法来搭建一个公网可以访问的网站. Github Page的话是一个github个人主页,完全适合用来搭建普通网站. ...