图论--最长路--洛谷P1807 最长路_NOI导刊2010提高(07)
题目描述
设G为有n个顶点的有向无环图,G中各顶点的编号为1到n,且当为G中的一条边时有i < j。设w(i,j)为边的长度,请设计算法,计算图G中<1,n>间的最长路径。
输入格式
输入文件longest.in的第一行有两个整数n和m,表示有n个顶点和m条边,接下来m行中每行输入3个整数a,b,v(表示从a点到b点有条边,边的长度为v)。
输出格式
输出文件longest.out,一个整数,即1到n之间的最长路径.如果1到n之间没连通,输出-1。
输入输出样例
输入 #1复制
2 1
1 2 1
输出 #1复制
1
说明/提示
20%的数据,n≤100,m≤1000
40%的数据,n≤1,000,m≤10000
100%的数据,n≤1,500,m≤50000,最长路径不大于10^9
思路:dijkstra不能求解最长路,直接跑spfa
#include<iostream>
#include<queue>
#include<algorithm>
#include<set>
#include<cmath>
#include<vector>
#include<map>
#include<stack>
#include<bitset>
#include<cstdio>
#include<cstring>
#define Swap(a,b) a^=b^=a^=b
#define cini(n) scanf("%d",&n)
#define cinl(n) scanf("%lld",&n)
#define cinc(n) scanf("%c",&n)
#define cins(s) scanf("%s",s)
#define coui(n) printf("%d",n)
#define couc(n) printf("%c",n)
#define coul(n) printf("%lld",n)
#define speed ios_base::sync_with_stdio(0)
#define Max(a,b) a>b?a:b
#define Min(a,b) a<b?a:b
#define mem(n,x) memset(n,x,sizeof(n))
#define INF 0x3f3f3f3f
#define maxn 100010
#define Ege 100000000
#define Vertex 1005
#define esp 1e-9
#define mp(a,b) make_pair(a,b)
using namespace std;
typedef long long ll;
typedef pair<int,int> PII;
struct Node
{
int to, lat, val; //边的右端点,边下一条边,边权
};
Node edge[1000005];
int head[1005],tot,dis[1005],N,M,vis[1005];
void add(int from, int to, int dis)
{
edge[++tot].lat = head[from];
edge[tot].to = to;
edge[tot].val = dis;
head[from] = tot;
}
void spfa(int s)
{
for(int i=0;i<=N;i++) dis[i]=-INF;
dis[0]=0;
memset(vis, 0, sizeof(vis));
vis[s] = 1;
dis[s] = 0;
queue<int>Q;
Q.push(s);
while (!Q.empty())
{
int u = Q.front();
Q.pop();
vis[u] = 0;
for (int i = head[u]; i; i = edge[i].lat)
{
int to = edge[i].to;
int di = edge[i].val;
if (dis[to]<dis[u] + di)
{
dis[to] = dis[u] + di;
if (!vis[to])
{
vis[to] = 1;
Q.push(to);
}
}
}
}
}
int main()
{
int t, x;
memset(head, 0, sizeof(head));
cini(N),cini(M);
while (M--)
{
int a, b, dis;
scanf("%d %d %d", &a, &b, &dis);
add(a, b, dis);
}
spfa(1);
if(dis[N]==-INF) {return cout<<-1<<endl,0;}
cout<<dis[N]<<endl;
return 0;
}
图论--最长路--洛谷P1807 最长路_NOI导刊2010提高(07)的更多相关文章
- 洛谷—— P1775 古代人的难题_NOI导刊2010提高(02)
P1775 古代人的难题_NOI导刊2010提高(02) 题目描述 门打开了,里面果然是个很大的厅堂.但可惜厅堂内除了中央的一张羊皮纸和一支精致的石笔,周围几具骷髅外什么也没有.难道这就是王室的遗产? ...
- 洛谷P1771 方程的解_NOI导刊2010提高(01)
题目描述 佳佳碰到了一个难题,请你来帮忙解决. 对于不定方程a1+a2+…+ak-1+ak=g(x),其中k≥2且k∈N,x是正整数,g(x)=x^x mod 1000(即x^x除以1000的余数), ...
- 洛谷——P1775 古代人的难题_NOI导刊2010提高(02)&& P1936 水晶灯火灵(斐波那契数列)
P1775 古代人的难题_NOI导刊2010提高(02) P1936 水晶灯火灵 斐波那契数列 1.x,y∈[1…k],且x,y,k∈Z 2.(x^2-xy-y^2)^2=1 给你一个整数k,求一组满 ...
- 洛谷 P1807 最长路_NOI导刊2010提高(07) 题解
P1807 最长路_NOI导刊2010提高(07) 题目描述 设G为有n个顶点的有向无环图,G中各顶点的编号为1到n,且当为G中的一条边时有i < j.设w(i,j)为边的长度,请设计算法,计算 ...
- 洛谷P1774 最接近神的人_NOI导刊2010提高(02)(求逆序对)
To 洛谷.1774 最接近神的人 题目描述 破解了符文之语,小FF开启了通往地下的道路.当他走到最底层时,发现正前方有一扇巨石门,门上雕刻着一幅古代人进行某种活动的图案.而石门上方用古代文写着“神的 ...
- 洛谷 P1807 最长路_NOI导刊2010提高(07)
最长路 #include <iostream> #include <cstdio> #include <cstring> #include <queue> ...
- 洛谷 P1807 最长路_NOI导刊2010提高(07)题解
相当与一个拓扑排序的模板题吧 蒟蒻的辛酸史 题目大意:给你一个有向无环图,让你求出1到n的最长路,如果没有路径,就输出-1 思路:一开始以为是一个很裸的拓扑排序 就不看题目,直接打了一遍拓扑排序 然后 ...
- 洛谷P1807 最长路_NOI导刊2010提高(07)
//拓扑排序求最长路 #include<bits/stdc++.h> #include<queue> using namespace std; const int INF=0x ...
- 题解【洛谷P1807】最长路_NOI导刊2010提高(07)
题面 题解 最长路模板. 只需要在最短路的模板上把符号改一下\(+\)初值赋为\(-1\)即可. 注意一定是单向边,不然出现了正环就没有最长路了,就好比出现了负环就没有最短路了. 只能用\(SPFA\ ...
随机推荐
- VXLAN 基础教程:VXLAN 协议原理介绍
VXLAN(Virtual eXtensible Local Area Network,虚拟可扩展局域网),是一种虚拟化隧道通信技术.它是一种 Overlay(覆盖网络)技术,通过三层的网络来搭建虚拟 ...
- Spring温习(1)--最基础的示例
Spring温习(1)--最基础的示例 博客分类: 框架-Spring专栏 SpringXMLBeanWebDAO 从现在开始,我将从Spring为起点,逐步复习几大框架各方面的知识,以便今后查看使用 ...
- 数据结构和算法(Golang实现)(3)简单入门Golang-流程控制语句
流程控制语句 计算机编程语言中,流程控制语句很重要,可以让机器知道什么时候做什么事,做几次.主要有条件和循环语句. Golang只有一种循环:for,只有一种判断:if,还有一种特殊的switch条件 ...
- Redis linux 下安装
Redis linux 下安装 下载Redis安装包,可以从Redis中文网站中下载 下载地址:http://www.redis.cn/download.html Redis4.0 稳定版本 使用&l ...
- Git应用详解第九讲:Git cherry-pick与Git rebase
前言 前情提要:Git应用详解第八讲:Git标签.别名与Git gc 这一节主要介绍git cherry-pick与git rebase的原理及使用. 一.Git cherry-pick Git ch ...
- 使用 Chrome 插件 Vimium 打造黑客浏览器
之前一直用 cVim,与 Vimium 功能类似,但是之后不在更新了,故转战到 Vimium. 简介 官网:http://vimium.github.io/ Vimium 是 Google Chrom ...
- window 10 安装paddlepaddle 1.7 GPU版本
window 10 安装paddlepaddle 1.7 GPU版本 1)更新显卡驱动 2)安装cuda 10 https://developer.nvidia.com/cuda-10.0-downl ...
- L10机器
机器翻译和数据集 机器翻译(MT):将一段文本从一种语言自动翻译为另一种语言,用神经网络解决这个问题通常称为神经机器翻译(NMT). 主要特征:输出是单词序列而不是单个单词. 输出序列的长度可能与源序 ...
- E - Roaming Atcoder
题解:https://blog.csdn.net/qq_40655981/article/details/104459253 题目大意:n个房间,,每个房间都有一个人,一共k天,在一天,一个人可以到任 ...
- [转载]利用分块传输绕过WAF进行SQL注入
原理 客户端给服务器发送数据的时候,如果我们利用协议去制作payload,就可以绕过http协议的waf,实现SQL注入 分块传输编码(Chunked transfer encoding)是HTTP中 ...