题目描述

设G为有n个顶点的有向无环图,G中各顶点的编号为1到n,且当为G中的一条边时有i < j。设w(i,j)为边的长度,请设计算法,计算图G中<1,n>间的最长路径。

输入格式

输入文件longest.in的第一行有两个整数n和m,表示有n个顶点和m条边,接下来m行中每行输入3个整数a,b,v(表示从a点到b点有条边,边的长度为v)。

输出格式

输出文件longest.out,一个整数,即1到n之间的最长路径.如果1到n之间没连通,输出-1。

输入输出样例

输入 #1复制

2 1

1 2 1

输出 #1复制

1

说明/提示

20%的数据,n≤100,m≤1000

40%的数据,n≤1,000,m≤10000

100%的数据,n≤1,500,m≤50000,最长路径不大于10^9

思路:dijkstra不能求解最长路,直接跑spfa

#include<iostream>
#include<queue>
#include<algorithm>
#include<set>
#include<cmath>
#include<vector>
#include<map>
#include<stack>
#include<bitset>
#include<cstdio>
#include<cstring>
#define Swap(a,b) a^=b^=a^=b
#define cini(n) scanf("%d",&n)
#define cinl(n) scanf("%lld",&n)
#define cinc(n) scanf("%c",&n)
#define cins(s) scanf("%s",s)
#define coui(n) printf("%d",n)
#define couc(n) printf("%c",n)
#define coul(n) printf("%lld",n)
#define speed ios_base::sync_with_stdio(0)
#define Max(a,b) a>b?a:b
#define Min(a,b) a<b?a:b
#define mem(n,x) memset(n,x,sizeof(n))
#define INF 0x3f3f3f3f
#define maxn 100010
#define Ege 100000000
#define Vertex 1005
#define esp 1e-9
#define mp(a,b) make_pair(a,b)
using namespace std;
typedef long long ll;
typedef pair<int,int> PII;
struct Node
{
int to, lat, val; //边的右端点,边下一条边,边权
};
Node edge[1000005];
int head[1005],tot,dis[1005],N,M,vis[1005];
void add(int from, int to, int dis)
{
edge[++tot].lat = head[from];
edge[tot].to = to;
edge[tot].val = dis;
head[from] = tot; }
void spfa(int s)
{ for(int i=0;i<=N;i++) dis[i]=-INF;
dis[0]=0;
memset(vis, 0, sizeof(vis));
vis[s] = 1;
dis[s] = 0;
queue<int>Q;
Q.push(s);
while (!Q.empty())
{
int u = Q.front();
Q.pop();
vis[u] = 0;
for (int i = head[u]; i; i = edge[i].lat)
{
int to = edge[i].to;
int di = edge[i].val;
if (dis[to]<dis[u] + di)
{
dis[to] = dis[u] + di;
if (!vis[to])
{
vis[to] = 1;
Q.push(to);
}
}
}
} }
int main()
{
int t, x; memset(head, 0, sizeof(head));
cini(N),cini(M);
while (M--)
{
int a, b, dis;
scanf("%d %d %d", &a, &b, &dis);
add(a, b, dis);
}
spfa(1);
if(dis[N]==-INF) {return cout<<-1<<endl,0;}
cout<<dis[N]<<endl; return 0;
}

图论--最长路--洛谷P1807 最长路_NOI导刊2010提高(07)的更多相关文章

  1. 洛谷—— P1775 古代人的难题_NOI导刊2010提高(02)

    P1775 古代人的难题_NOI导刊2010提高(02) 题目描述 门打开了,里面果然是个很大的厅堂.但可惜厅堂内除了中央的一张羊皮纸和一支精致的石笔,周围几具骷髅外什么也没有.难道这就是王室的遗产? ...

  2. 洛谷P1771 方程的解_NOI导刊2010提高(01)

    题目描述 佳佳碰到了一个难题,请你来帮忙解决. 对于不定方程a1+a2+…+ak-1+ak=g(x),其中k≥2且k∈N,x是正整数,g(x)=x^x mod 1000(即x^x除以1000的余数), ...

  3. 洛谷——P1775 古代人的难题_NOI导刊2010提高(02)&& P1936 水晶灯火灵(斐波那契数列)

    P1775 古代人的难题_NOI导刊2010提高(02) P1936 水晶灯火灵 斐波那契数列 1.x,y∈[1…k],且x,y,k∈Z 2.(x^2-xy-y^2)^2=1 给你一个整数k,求一组满 ...

  4. 洛谷 P1807 最长路_NOI导刊2010提高(07) 题解

    P1807 最长路_NOI导刊2010提高(07) 题目描述 设G为有n个顶点的有向无环图,G中各顶点的编号为1到n,且当为G中的一条边时有i < j.设w(i,j)为边的长度,请设计算法,计算 ...

  5. 洛谷P1774 最接近神的人_NOI导刊2010提高(02)(求逆序对)

    To 洛谷.1774 最接近神的人 题目描述 破解了符文之语,小FF开启了通往地下的道路.当他走到最底层时,发现正前方有一扇巨石门,门上雕刻着一幅古代人进行某种活动的图案.而石门上方用古代文写着“神的 ...

  6. 洛谷 P1807 最长路_NOI导刊2010提高(07)

    最长路 #include <iostream> #include <cstdio> #include <cstring> #include <queue> ...

  7. 洛谷 P1807 最长路_NOI导刊2010提高(07)题解

    相当与一个拓扑排序的模板题吧 蒟蒻的辛酸史 题目大意:给你一个有向无环图,让你求出1到n的最长路,如果没有路径,就输出-1 思路:一开始以为是一个很裸的拓扑排序 就不看题目,直接打了一遍拓扑排序 然后 ...

  8. 洛谷P1807 最长路_NOI导刊2010提高(07)

    //拓扑排序求最长路 #include<bits/stdc++.h> #include<queue> using namespace std; const int INF=0x ...

  9. 题解【洛谷P1807】最长路_NOI导刊2010提高(07)

    题面 题解 最长路模板. 只需要在最短路的模板上把符号改一下\(+\)初值赋为\(-1\)即可. 注意一定是单向边,不然出现了正环就没有最长路了,就好比出现了负环就没有最短路了. 只能用\(SPFA\ ...

随机推荐

  1. 团队项目-运动App

    一:团队成员介绍 队长:温学智 博客地址:https://www.cnblogs.com/dazhi151/                    技术型大佬,学习能力相对团队来说是最高的.并且作为班 ...

  2. 第一天总结(while计数器+成绩大小+获取时间+猜拳大小)

    #*_* coding:utf-8 *_*# while 先有一个计数器 input = 0# input = input('输入数字')while input < 5: input= inpu ...

  3. Solr复杂查询一:函数查询

    一.简介 Solr的函数可以动态计算每个文档的值,而不是返回在索引阶段对应字段的静态数值集.函数查询是一类特殊的查询,它可以像关键词一样添加到查询中,对所有文档进行匹配并返回它们的函数计算值作为文档得 ...

  4. slice使用了解

    切片 什么是slice slice的创建使用 slice使用的一点规范 slice和数组的区别 slice的append是如何发生的 复制Slice和Map注意事项 什么是slice Go中的切片,是 ...

  5. synchronized 与 volatile 区别 还有 volatile 的含义

    熟悉并发的同学一定知道在java中处理并发主要有两种方式: 1,synchronized关键字,这个大家应当都各种面试和笔试中经常遇到. 2,volatile修饰符的使用,相信这个修饰符大家平时在项目 ...

  6. qad progress数据库启动出错解决

    1. 启动时报:SYSTEM ERROR: Wrong dbkey in block. Found 0, should be 6342528 in area 36.  (439) ** Save fi ...

  7. CodeForces - 876B H - 差异的可分割性

    现在有n个整数,在这n个数中找出k个数,保证这k个数中任意两个数差的绝对值可以被m整除. Input第一行输入三个整数n,k,m(2<=k<=n<=100000,1<=m< ...

  8. 机器学习常见面试题—支持向量机SVM

    前言 总结了2017年找实习时,在头条.腾讯.小米.搜狐.阿里等公司常见的机器学习面试题. 支持向量机SVM 关于min和max交换位置满足的 d* <= p* 的条件并不是KKT条件 Ans: ...

  9. Charles抓包——弱网测试(客户端)

    基础知识 网络延迟:网络延时指一个数据包从用户的计算机发送到网站服务器,然后再立即从网站服务器返回用户计算机的来回时间.通常使用网络管理工具PING(Packet Internet Grope)来测量 ...

  10. 解决报错:JPA-style positional param was not an integral ordinal;

    org.hibernate.QueryException: JPA-style positional param was not an integral ordinal; nested excepti ...