0 - 算法

  给定如下数据集

$$T=\{(x_1,y_1),(x_2,y_2),\cdots,(x_N,y_N)\},$$

假设$X$有$J$维特征,且各维特征是独立分布的,$Y$有$K$种取值。则对于输入$x$,朴素贝叶斯算法的输出为

$$y=arg\max_{c_k}P(Y=c_k)\prod_j P(X^{(j)}=x^{(j)}|Y=c_k),j=1,\cdots,J,k=1,\cdots,K,$$

其中先验概率$P(Y=c_k)$和条件概率$P(X^{(j)}=x^{(j)}|Y=c_k)$的极大似然估计在下一节给出。

1 - 推导

  朴素贝叶斯的基本公式为

$$P(B|A)=\frac{P(A|B)P(B)}{P(A)},$$

  因此,对于输入数据$x$,预测类别$c_k$的概率可以表示为

$$\begin{align}P(Y=c_k|X=x)=\frac{P(X=x|Y=c_k)P(Y=c_k)}{P(X=x)}\end{align}$$

  且有,

$$\begin{align}P(X=x)=P(Y=c_k)\sum_{k}P(X=x|Y=c_k)\end{align}$$

  根据特征之间独立分布,又有

$$\begin{align}P(X=x|Y=c_k)=P(X^{(1)}=x^{(1)},\cdots,X^{(J)}=x^{(J)}|Y=c_k)=\prod_{j=1}^JP(X^{(j)}=x^{(j)}|Y=c_k)\end{align}$$

  将式$(3)$代入式$(2)$可得

$$\begin{align}P(X=x)=\sum_{k}P(Y=c_k)\prod_{j=1}^JP(X^{(j)}=x^{(j)}|Y=c_k)\end{align}$$

  将式$(3)(4)$代入式$(1)$可得

$$\begin{align}P(Y=c_k|X=x)=\frac{P(Y=c_k)\prod_{j=1}^JP(X^{(j)}=x^{(j)}|Y=c_k)}{\sum_{k}P(Y=c_k)\prod_{j=1}^JP(X^{(j)}=x^{(j)}|Y=c_k)}\end{align}$$

  注意到,对于所有类别$Y=c_k$,其分母均是一样的,因此最终算法可以将分母去掉而不影响预测概率的相对大小。朴素贝叶斯算法可写成如下形式

$$y=arg\max_{c_k}P(Y=c_k|X=x)=arg\max_{c_k}P(Y=c_k)\prod_{j=1}^JP(X^{(j)}=x^{(j)}|Y=c_k),$$

由上式可知,朴素贝叶斯算法只需要对$P(Y=c_k)$和$P(X^{(j)}=x^{(j)}|Y=c_k)$进行参数估计(极大似然估计)即可。

  先验概率$P(Y=c_k)$的极大似然估计可以表示为

$$P(Y=c_k)=\frac{\sum_{j=1}^N I(y_i=c_k)}{N},\ k=1,2,\cdots,K,$$

  条件概率$P(X^{(j)}=x^{(j)}|Y=c_k)$的极大似然估计,假设第$j$个特征$x^{(j)}$的取值集合为$\{a_{j1},a_{j2},\cdots,a_{jS_j}\}$,则有

$$P(X^{(j)}=a_{jl}|Y=c_k)=\frac{\sum_{i=1}^N I(x_i^{(j)}=a_{jl},y_i=c_k)}{\sum_{i=1}^N I(y_i=c_k)},\ j=1,2,\cdots,J;l=1,2,\cdots,S_j;k=1,2,\cdots,K.$$

2 - 参考资料

《统计学习方法》,李航

【分类算法】朴素贝叶斯(Naive Bayes)的更多相关文章

  1. 机器学习算法实践:朴素贝叶斯 (Naive Bayes)(转载)

    前言 上一篇<机器学习算法实践:决策树 (Decision Tree)>总结了决策树的实现,本文中我将一步步实现一个朴素贝叶斯分类器,并采用SMS垃圾短信语料库中的数据进行模型训练,对垃圾 ...

  2. 朴素贝叶斯 Naive Bayes

    2017-12-15 19:08:50 朴素贝叶斯分类器是一种典型的监督学习的算法,其英文是Naive Bayes.所谓Naive,就是天真的意思,当然这里翻译为朴素显得更学术化. 其核心思想就是利用 ...

  3. python机器学习(三)分类算法-朴素贝叶斯

    一.概率基础 概率定义:概率定义为一件事情发生的可能性,例如,随机抛硬币,正面朝上的概率. 联合概率:包含多个条件,且所有条件同时成立的概率,记作:

  4. Python机器学习算法 — 朴素贝叶斯算法(Naive Bayes)

    朴素贝叶斯算法 -- 简介 朴素贝叶斯法是基于贝叶斯定理与特征条件独立假设的分类方法.最为广泛的两种分类模型是决策树模型(Decision Tree Model)和朴素贝叶斯模型(Naive Baye ...

  5. 分类算法之贝叶斯(Bayes)分类器

    摘要:旁听了清华大学王建勇老师的 数据挖掘:理论与算法 的课,讲的还是挺细的,好记性不如烂笔头,在此记录自己的学习内容,方便以后复习.   一:贝叶斯分类器简介 1)贝叶斯分类器是一种基于统计的分类器 ...

  6. 朴素贝叶斯(Naive Bayesian)

    简介 Naive Bayesian算法 也叫朴素贝叶斯算法(或者称为傻瓜式贝叶斯分类) 朴素(傻瓜):特征条件独立假设 贝叶斯:基于贝叶斯定理 这个算法确实十分朴素(傻瓜),属于监督学习,它是一个常用 ...

  7. (ZT)算法杂货铺——分类算法之贝叶斯网络(Bayesian networks)

    https://www.cnblogs.com/leoo2sk/archive/2010/09/18/bayes-network.html 2.1.摘要 在上一篇文章中我们讨论了朴素贝叶斯分类.朴素贝 ...

  8. 机器学习集成算法--- 朴素贝叶斯,k-近邻算法,决策树,支持向量机(SVM),Logistic回归

    朴素贝叶斯: 是使用概率论来分类的算法.其中朴素:各特征条件独立:贝叶斯:根据贝叶斯定理.这里,只要分别估计出,特征 Χi 在每一类的条件概率就可以了.类别 y 的先验概率可以通过训练集算出 k-近邻 ...

  9. 机器学习理论基础学习3.5--- Linear classification 线性分类之朴素贝叶斯

    一.什么是朴素贝叶斯? (1)思想:朴素贝叶斯假设    条件独立性假设:假设在给定label y的条件下,特征之间是独立的    最简单的概率图模型 解释: (2)重点注意:朴素贝叶斯 拉普拉斯平滑 ...

  10. 【机器学习速成宝典】模型篇05朴素贝叶斯【Naive Bayes】(Python版)

    目录 先验概率与后验概率 条件概率公式.全概率公式.贝叶斯公式 什么是朴素贝叶斯(Naive Bayes) 拉普拉斯平滑(Laplace Smoothing) 应用:遇到连续变量怎么办?(多项式分布, ...

随机推荐

  1. [postman][API 测试]用Postman做RestAPI测试学习笔记

    痛点:最近有个API网关的兼容性测试任务,需要验证API是否可用,返回值符合预期,如果手工复制粘贴curl命令,繁琐且低效 调研时发现了Postman 这个chrom插件,试用了2天后发现使用起来很方 ...

  2. Nginx- web服务配置与测试

    (一) 软件介绍由俄罗斯人lgor Sysove开发,为开源软件.支持高并发:支持几万并发连接(特别是静态小文件业务环境) 资源消耗少:在3万并发连接下开启10个Nginx线程消耗内存不到200M 支 ...

  3. C++(三十四) — 友元函数、友元类

    友元是可以访问类的私有成员和保护成员的外部函数.由 friend 修饰,不是本类的成员函数,但是在它的函数体中可以通过对象名访问本类的私有和保护成员.     友元关系不可传递,且是单向的.    友 ...

  4. JDBC终章- 使用 DBUtils实现增删查改- C3P0Utils数据源/QueryRunner runner连接数据源并执行sql

    JDBC终章- 使用 DBUtils实现增删查改 1.数据库结构 Create Table CREATE TABLE `user` ( `id` ) NOT NULL AUTO_INCREMENT, ...

  5. 大数据之路week06--day07(Hadoop生态圈的介绍)

    Hadoop 基本概念 一.Hadoop出现的前提环境 随着数据量的增大带来了以下的问题 (1)如何存储大量的数据? (2)怎么处理这些数据? (3)怎样的高效的分析这些数据? (4)在数据增长的情况 ...

  6. linux基础第四周

    天津SEO: 1.统计出/etc/passwd文件中默认shell为非/sbin/nologin的用户个数,并将用户都显示出来 [root@localhost ~]# awk -F: -v i=&qu ...

  7. [0, 1] 区间内 n 次独立随机事件的一些问题

    问题一 证明:一根1米长的绳子,随机切成 $N$ 刀,变成($N+1$)根绳子,则最短的一根绳子长度的期望为 $\displaystyle \frac{1}{(N+1)^2}$. 证: 引理:当分成 ...

  8. MyBatis模糊查询和多条件查询

    一.ISmbmsUserDao层 //根据姓名模糊查询 public List<Smbms> getUser(); //多条件查询 public List<Smbms> get ...

  9. 012_Python3 斐波纳契数列 + end 关键字

    1.个斐波纳契数列. #!/usr/bin/python3   # Fibonacci series: 斐波纳契数列 # 两个元素的总和确定了下一个数 a, b = 0, 1 while b < ...

  10. xml介绍+xml创建+xml读取

    1.xml介绍:(URL:https://blog.csdn.net/weixin_37861326/article/details/81082144) xml是用来传输内容的,是w3c推荐的 2.使 ...