思路:斜率优化

提交:\(2\)次

错因:二分写挂

题解:

首先观察可知,



对于点\(f(X,Y)\),一定是由某个点\((1,p)\),先向下走,再向右下走。

并且有个显然的性质,若从\((1,p)\)向下走,则\(a[p]=min(a[i]),i\in [p,Y]\)(要不然直接从后面的更小的那个位置向下走,再向右下走)

还有一个显然的性质,若\(i<j\)且\(i\)比\(j\)更优,则\(a[i]>a[j]\)(上面的结论)

设\(s[i]=\sum_{j=i}^i a[j]\)

那么对于点\(f(X,Y)\)有\(ans=s[Y]-s[i]+a[i]*(X-Y+i),i\in [max(1,Y-X),Y]\)

这个式子是可以斜率优化的:\(s[i]-a[i]*i=(X-Y)*a[i]+s[Y]-ans\)

要最小化\(ans\),就是最大化\(s[Y]-ans\),所以我们用单调栈维护下降斜率(上凸包),每次先查找合法区间\(i\in [max(1,Y-X),Y]\),然后再在单调栈中二分斜率。

#include<cstdio>
#include<iostream>
#include<algorithm>
#define R register int
using namespace std;
namespace Luitaryi {
template<class I> inline I g(I& x) { x=0;
register I f=1; register char ch; while(!isdigit(ch=getchar())) f=ch=='-'?-1:f;
do x=x*10+(ch^48); while(isdigit(ch=getchar())); return x*=f;
} const int N=1e5+10;
int n,m,a[N],s[N],stk[N],ans[N],t;
struct node {int x,y,p;
inline bool operator < (const node& that) const {return y<that.y;}
}b[N];
inline int getlim(int pos) {
R l=1,r=t; while(l<r) { R md=l+r>>1;
if(stk[md]<pos) l=md+1; else r=md;
} return l;
}
inline double calc(int i,int j) {return ((double)(s[i]-a[i]*i)-(double)(s[j]-a[j]*j))/(double)(a[i]-a[j]);}
inline void main() {
g(n); for(R i=1;i<=n;++i) g(a[i]),s[i]=s[i-1]+a[i];
g(m); for(R i=1;i<=m;++i) g(b[i].x),g(b[i].y),b[i].p=i;
sort(b+1,b+m+1); for(R i=1,j=1;i<=n;++i) {
while(t&&a[stk[t]]>=a[i]) --t;
while(t>1&&calc(stk[t],i)>=calc(stk[t-1],i)) --t;
stk[++t]=i; while(b[j].y==i&&j<=m) {
R l=getlim(b[j].y-b[j].x),r=t;
while(l<r) { R md=l+r>>1;
if(calc(stk[md],stk[md+1])<b[j].x-b[j].y) r=md;
else l=md+1;
} l=stk[l],r=b[j].y;
ans[b[j].p]=s[r]-s[l]+a[l]*(b[j].x-r+l); ++j;
}
} for(R i=1;i<=m;++i) printf("%d\n",ans[i]);
}
} signed main() {Luitaryi::main(); return 0;}

2019.08.12

88

51nod 1488 帕斯卡小三角 斜率优化的更多相关文章

  1. 【BZOJ-3437】小P的牧场 DP + 斜率优化

    3437: 小P的牧场 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 705  Solved: 404[Submit][Status][Discuss ...

  2. BZOJ 3437: 小P的牧场 斜率优化DP

    3437: 小P的牧场 Description 背景 小P是个特么喜欢玩MC的孩纸... 描述 小P在MC里有n个牧场,自西向东呈一字形排列(自西向东用1…n编号),于是他就烦恼了:为了控制这n个牧场 ...

  3. bzoj3437小P的牧场 斜率优化dp

    3437: 小P的牧场 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 1542  Solved: 849[Submit][Status][Discus ...

  4. 斜率优化入门学习+总结 Apio2011特别行动队&Apio2014序列分割&HZOI2008玩具装箱&ZJOI2007仓库建设&小P的牧场&防御准备&Sdoi2016征途

    斜率优化: 额...这是篇7个题的题解... 首先说说斜率优化是个啥,额... f[i]=min(f[j]+xxxx(i,j)) ;   1<=j<i (O(n^2)暴力)这样一个式子,首 ...

  5. [小A与最大子段和][斜率优化dp+二分]

    链接:https://ac.nowcoder.com/acm/contest/545/A来源:牛客网题目描述 小A在网上看到了 "最大子段和" 问题的解法.第二天,小A向小B讲解了 ...

  6. 【BZOJ3437】小P的牧场 斜率优化

    [BZOJ3437]小P的牧场 Description 背景 小P是个特么喜欢玩MC的孩纸... 描述 小P在MC里有n个牧场,自西向东呈一字形排列(自西向东用1…n编号),于是他就烦恼了:为了控制这 ...

  7. 【BZOJ3437】小P的牧场(动态规划,斜率优化)

    [BZOJ3437]小P的牧场(动态规划,斜率优化) 题面 BZOJ 题解 考虑暴力\(dp\),设\(f[i]\)表示强制在\(i\)处建立控制站的并控制\([1..i]\)的最小代价. 很显然,枚 ...

  8. 【bzoj3437】小P的牧场 斜率优化dp

    题目描述 背景 小P是个特么喜欢玩MC的孩纸... 描述 小P在MC里有n个牧场,自西向东呈一字形排列(自西向东用1…n编号),于是他就烦恼了:为了控制这n个牧场,他需要在某些牧场上面建立控制站,每个 ...

  9. BZOJ3437:小P的牧场(斜率优化DP)

    Description 小P在MC里有n个牧场,自西向东呈一字形排列(自西向东用1…n编号),于是他就烦恼了:为了控制这n个牧场,他需要在某些牧场上面建立控制站,每个牧场上只能建立一个控制站,每个控制 ...

随机推荐

  1. Python 实例代码二

    1.实现isNum()函数,参数为一个字符串,如果这个字符串属于整数.浮点数或复数的表示,则返回True,否则返回False def isNum(word): try: word=type(eval( ...

  2. Django框架学习易错和易忘点

    一.get在几处的用法 1.获取前端数据 request.POST.get('xxx') #当存在多个值时,默认取列表最后一个元素:所以当存在多个值时,使用getlist 2.获取数据库数据 mode ...

  3. 1181: 零起点学算法88——偶数求和(C语言)

    一.题目: 题目来源WUSTOJ 二.源代码: #include<stdio.h> int main() { int n, m, num, sum, i, j, k; while (sca ...

  4. xorm表结构操作实例

    获取数据库信息 package main import ( "fmt" _ "github.com/go-sql-driver/mysql" "git ...

  5. C++11 特性

    之前工作中开发/维护的模块大多都是 "远古代码",只能编译 C++98,很多 C++11 的特性都忘得差不多了,再回顾一下 右值引用&转移语义: 消除两个对象交互时不必要的 ...

  6. 解决阿里云OSS The requested bucket name is not available的办法

    今天在创建Bucket的时候遇到了这个问题 The requested bucket name is not available. The bucket namespace is shared by ...

  7. Java Web 深入分析(10) Spring 实践

    Spring helloworld [http://wiki.jikexueyuan.com/project/spring/hello-world-example.html] HelloWorld.j ...

  8. iOS - The file “XXX.app” couldn’t be opened because you don’t have permission to view it.

    当引入第三方的框架的时候 容易产生以下问题: The file “XXX.app” couldn’t be opened because you don’t have permission to vi ...

  9. thinkphp中 select() 和find() 方法的区别

    $about=M('document'); $abouts=$about->where('id=2')->select(); $abouts2=$about->where('id=2 ...

  10. jQuery笔试题汇总整理

    1 你在公司是怎么用jquery的? 答:在项目中是怎么用的是看看你有没有项目经验(根据自己的实际情况来回答) 你用过的选择器啊,动画啊,表单啊,ajax事件等 配置Jquery环境 下载jquery ...