题意

共有\(n\)个数,选择\(k\)个不同的\([l,r]\)区间,使得它们的异或和最大

$ 1 \leq n \leq 5 \times 10^5,k \leq 2 \times 10^5$

思路

先会想到前缀异或和,这样求\([l,r]\)区间异或和只需要用\(pre[l-1]\oplus pre[r]\)以此减少运算次数。然后由于是异或,又会想到\(trie\),然后想一想,好像要用可持久化!!!完了太菜了不会。

但为了偷懒,必须思考。思考过后发现,不用可持久化,\([l,r]\)区间算\([l,r],[r,l]\)两次,答案再除二就好了

#include <bits/stdc++.h>
using std::priority_queue;
const int N=500005;
long long trie[N<<5][2],a[N],x,ans;
int tot=1,n,k,size[N<<5];
struct note{
int x,rk;
long long w;
bool operator < (const note &a)const{return w<a.w;}
};
priority_queue <note> q;
long long read(){
long long t=0;
char c=getchar();
while (c<'0' || c>'9')
c=getchar();
while (c>='0' && c<='9') t=t*10+c-'0',c=getchar();
return t;
} void add(long long x){
int u=1;
for (int i=31;i>=0;i--){
int t=(x>>i)&1;
size[u]++;
if (!trie[u][t]) trie[u][t]=++tot;
u=trie[u][t];
}
size[u]++;
}
long long query(long long x,int k){
long long ans=0;
int u=1;
for (int i=31;i>=0;i--){
int t=(x>>i)&1;
if (trie[u][t^1] && size[trie[u][t^1]]>=k)
u=trie[u][t^1],ans^=1LL<<i;
else k-=size[trie[u][t^1]],u=trie[u][t];
}
return ans;
}
int main(){
scanf("%d%d",&n,&k);
for (int i=1;i<=n;i++){
x=read();
a[i]=a[i-1]^x;
add(a[i]);
}
add(0);
for (int i=0;i<=n;i++) q.push(note{i,1,query(a[i],1)});
for (int i=1;i<=k*2;i++){
note t=q.top();q.pop();
ans+=t.w;
if (t.rk<=n) q.push(note{t.x,t.rk+1,query(a[t.x],t.rk+1)});
}
printf("%lld",ans/2);
}

上海省选浪的太开心了,太菜了第二天\(99\)难受

LG5283 异或粽子的更多相关文章

  1. [十二省联考2019]异或粽子——可持久化trie树+堆

    题目链接: [十二省联考2019]异或粽子 求前$k$大异或区间,可以发现$k$比较小,我们考虑找出每个区间. 为了快速得到一个区间的异或和,将原序列做前缀异或和. 对于每个点作为右端点时,我们维护出 ...

  2. 【BZOJ5495】[十二省联考2019]异或粽子(主席树,贪心)

    [BZOJ5495][十二省联考2019]异或粽子(主席树,贪心) 题面 BZOJ 洛谷 题解 这不是送分题吗... 转异或前缀和,构建可持久化\(Trie\). 然后拿一个堆维护每次的最大值,每次如 ...

  3. [十二省联考2019]异或粽子 01trie

    [十二省联考2019]异或粽子 01trie 链接 luogu 思路 首先求前k大的(xo[i]^xo[j])(i<j). 考场上只想到01trie,不怎么会写可持久,就写了n个01trie,和 ...

  4. LOJ3048 「十二省联考 2019」异或粽子

    题意 题目描述 小粽是一个喜欢吃粽子的好孩子.今天她在家里自己做起了粽子. 小粽面前有 $n$ 种互不相同的粽子馅儿,小粽将它们摆放为了一排,并从左至右编号为 $1$ 到 $n$.第 $i$ 种馅儿具 ...

  5. 『异或粽子 堆 可持久化trie』

    异或粽子 Description 小粽是一个喜欢吃粽子的好孩子.今天她在家里自己做起了粽子. 小粽面前有 n 种互不相同的粽子馅儿,小粽将它们摆放为了一排,并从左至右编号为 1 到 n.第 i 种馅儿 ...

  6. 【简】题解 P5283 [十二省联考2019]异或粽子

    传送门:P5283 [十二省联考2019]异或粽子 题目大意: 给一个长度为n的数列,找到异或和为前k大的区间,并求出这些区间的异或和的代数和. QWQ: 考试时想到了前缀异或 想到了对每个数按二进制 ...

  7. 洛谷P5283 & LOJ3048:[十二省联考2019]异或粽子——题解

    https://www.luogu.org/problemnew/show/P5283 https://loj.ac/problem/3048 小粽是一个喜欢吃粽子的好孩子.今天她在家里自己做起了粽子 ...

  8. P5283 [十二省联考2019]异或粽子 可持久化01Trie+线段树

    $ \color{#0066ff}{ 题目描述 }$ 小粽是一个喜欢吃粽子的好孩子.今天她在家里自己做起了粽子. 小粽面前有 \(n\) 种互不相同的粽子馅儿,小粽将它们摆放为了一排,并从左至右编号为 ...

  9. 「十二省联考 2019」异或粽子——tire树+堆

    题目 [题目描述] 小粽是一个喜欢吃粽子的好孩子.今天她在家里自己做起了粽子. 小粽面前有 $n$ 种互不相同的粽子馅儿,小粽将它们摆放为了一排,并从左至右编号为 $1$ 到 $n$.第 $i$ 种馅 ...

随机推荐

  1. 怎样获取所有style节点

    通过 document.styleSheets 获取所有的样式表节点. document.styleSheets instanceof StyleSheetList; // true 注意: 1. 返 ...

  2. 10-MySQlL DBA笔记-基础知识

    第四部分 运维篇 首先来了解一下数据库的定义,数据库是高效的.可靠的.易用的.安全的多用户存储引擎,我们可以通过它访问大量的持久化数据.我们管理和维护数据库,本质上也是要确保如上的特性,尽可能地保证数 ...

  3. el-table 单元格样式修改

    <el-table :cell-style="set_cell_style"> set_cell_style({row, column, rowIndex, colum ...

  4. android-studio-ide 安装到运行第一个helloword,坑记录

    1: 安装是提示  机器虚拟化问题,系统如开启了Hyper-V,必须关闭服务 2:安装完后,建立第一个项目,gradle build 一直转圈,最后报错 Gradle project sync fai ...

  5. React会自动把虚拟DOM数组展开

    React会自动把虚拟DOM数组展开,放在父级虚拟DOM中,这个特性还是我同事帮我解决一个问题的时候,偶然发现的. 如何将一个数据数组转换为一个虚拟DOM的数组,需要使用map,如下: const n ...

  6. 7.使用EXPLAIN 来分析SQL和表结构_2

    possible_keys    ------   显示可能应用在这张表的索引,一个或多个 查询涉及到的字段上若存在索引,则该索引将被列出,但不一定被实际查询使用 key   ------   实际使 ...

  7. db2数据库的备份与还原

    前言: 数据备份的重要性: 提高系统的高可用性和灾难可恢复性:(在数据库系统崩溃的时候,没有数据库备份怎么办!) 使用数据库备份还原数据库是数据库系统崩溃时提供数据恢复最小代价的最优方案:(总不能让客 ...

  8. 安装python包时出现VC++ 错误的解决方案

    方式一 就是按照提示在微软的官网上下载宇宙第一编辑器VS,安装完之后卸载掉就好了. 方式二 下载whl包安装 因为python有很多native的包,不是纯python代码,用了诸如c/c++的代码, ...

  9. PAT Basic 1061 判断题 (15 分)

    判断题的评判很简单,本题就要求你写个简单的程序帮助老师判题并统计学生们判断题的得分. 输入格式: 输入在第一行给出两个不超过 100 的正整数 N 和 M,分别是学生人数和判断题数量.第二行给出 M ...

  10. TCP 的三次握手和四次挥手,TCP 的流量控制和拥塞控制

    70.TCP协议的三次握手与四次挥手70.1.TCP报文结构   1.源端口号:表示发送端端口号,字段长为16位.  2.目标端口号:表示接收端口号,字段长为16位.  3.序列号:表示发送数据的位置 ...