Power of Cryptography

Time Limit: 1000MS   Memory Limit: 30000K
Total Submissions: 26622   Accepted: 13301

Description

Current work in cryptography involves (among other things) large prime numbers and computing powers of numbers among these primes. Work in this area has resulted in the practical use of results from number theory and other branches of mathematics once considered to be only of theoretical interest. 
This problem involves the efficient computation of integer roots of numbers. 
Given an integer n>=1 and an integer p>= 1 you have to write a program that determines the n th positive root of p. In this problem, given such integers n and p, p will always be of the form k to the nth. power, for an integer k (this integer is what your program must find).

Input

The input consists of a sequence of integer pairs n and p with each integer on a line by itself. For all such pairs 1<=n<= 200, 1<=p<10101 and there exists an integer k, 1<=k<=109 such that kn = p.

Output

For each integer pair n and p the value k should be printed, i.e., the number k such that k n =p.

Sample Input

2 16
3 27
7 4357186184021382204544

Sample Output

4
3
1234

Source

 
题意:
求一个整数k,使得k满足kn=p。
 
题意分析:
1)
 1<=n<= 200, 1<=p<10101 ,1<=k<=109 , kn = p. 
最直观的解题思路是使用 高精度算法,但是这道题可以使用double巧妙地避开。

用pow函数求解:

k = pow(p, 1.0/n)

double的取值范围为10^(-307)~10^308,但小数精度只有前16位, 其误差范围在10^(-15)的数量级左右.

这个误差级数仅会对n的小数部分存在影响,四舍五入后对整数部分是无影响的.
而题目已经限定了,n、k、p均是整数,因此使用公式法可以直接得到准确结果.

假若题目不存在整数限制,当n极大时,k会极小(无限迫近1,对小数精度极高),
此时公式法则会因为精度问题而失效.

 #include<iostream>
#include<cmath>
using namespace std;
int main()
{
double n,p;
while(cin>>n>>p)
{
double k;
k = pow(p,1.0/n);
cout<<k<<endl;;
}
return ;
}

2)使用 高精度算法 + 二分法

首先,想要求 kn = p的k,不使用如上计算方法的公式法,只能枚举k,进行高精度乘法。

寻找k的方法,可以使用二分法。

那k的范围是什么呢,考虑样例7 4357186184021382204544,p是22位,22/7=3~4,向上取整,所以p是一个四位数,即1000<=p<=9999。

在这个范围进行二分查找,就可以找到k。

关于高精度算法,看过一个博文,想了解详情的可以移步=》从零开始学算法:高精度计算

c++ / % 四舍五入 向上取整ceil 向下取整floor

 #include<iostream>
#include<math.h>
#include<cstring>
#include<stdio.h>
using namespace std;
const int maxp = ;
//const int maxk = 12;
int p[maxp];
int k[maxp]; int Compare(int a[],int b[])
{///如果相等返回0,>返回1,<返回-1
if(a[0] > b[0]) return 1;
else if(a[] < b[]) return -;
else//位数相等,需要逐位判断
{
for(int i=a[];i>;i--)
{
if(a[i]>b[i]) return ;
else if(a[i] < b[i]) return -;
}
}
return ;
} void bigEqual(int n)
{///计算k^n,将结果存在k中
int temp[maxp];int Equal[maxp];
memset(Equal,,sizeof(Equal));//用来存放另一个乘数
memset(temp,,sizeof(temp));//用来存放每次相乘的结果
for(int i = ;i<=k[];i++)
Equal[i] = k[i];
for(int turn = ;turn<n;turn++)
{
for(int i=;i<=k[];i++)///计算k * Equal,存在temp中
{
for(int j=;j<=Equal[];j++)
{
temp[i+j-] += k[i]*Equal[j];
}
temp[] = Equal[]+k[]-;
for(int j=;j<=temp[];j++)///处理进位
{
if(temp[j]>=)
{
temp[j+] += temp[j]/;temp[j] = temp[j]%;
}
}
while(temp[temp[]+])
{
temp[]++;
temp[temp[]+] = temp[temp[]]/;
temp[temp[]] = temp[temp[]]%;
}
}
for(int m=;m<=temp[];m++)
Equal[m] = temp[m];//转存temp作为下一次的乘数
memset(temp,,sizeof(temp));
}
for(int i=;i<=Equal[];i++)
k[i] = Equal[i];
} int main()
{
char s[maxp];
int n;
while(scanf("%d %s",&n,&s) != EOF)
{
memset(p,,sizeof(p));
///将p处理成数组
p[] = strlen(s);//第一位存储p的位数
for(int i=p[]-;i>=;i--)
{
p[p[]-i] = s[i]-'';
}
int kLength = ceil((double)p[]/n);//向上取整
int Min = ,Max = ;
for(int i=;i<kLength;i++)
{
Min *=;
}
for(int i=;i<kLength;i++)
{
Max *=;Max += ;
}
///使用二分法查找
double Mid = (Min+Max)/;
for(int low = Min,up = Max;low<=up;)
{
memset(k,,sizeof(k));
///给k赋值为Mid
int i=;int temp = Mid;
while(temp)
{
k[i] = temp%;
temp = temp/;
i++;
}
k[] = i-;//k[0]存储k的长度
bigEqual(n);///计算k^n,将结果存储在k中
int j = Compare(k,p);
if(j == )//相等
break;
else if(j == )//k>p,向Mid的左侧查找
{
up = Mid-;Mid = (low+up)/;
}
else{//k<p,向Mid的右侧查找
low = Mid+;Mid = (low+up)/;
}
}
cout<<Mid<<endl;
}
return ;
}

告诫自己:

s不可以用String类型

string不可以用cin>>进行赋值

POJ 2109 -- Power of Cryptography的更多相关文章

  1. 贪心 POJ 2109 Power of Cryptography

    题目地址:http://poj.org/problem?id=2109 /* 题意:k ^ n = p,求k 1. double + pow:因为double装得下p,k = pow (p, 1 / ...

  2. poj 2109 Power of Cryptography

    点击打开链接 Power of Cryptography Time Limit: 1000MS   Memory Limit: 30000K Total Submissions: 16388   Ac ...

  3. POJ 2109 Power of Cryptography 数学题 double和float精度和范围

    Power of Cryptography Time Limit: 1000MS Memory Limit: 30000K Total Submissions: 21354 Accepted: 107 ...

  4. poj 2109 Power of Cryptography (double 精度)

    题目:http://poj.org/problem?id=2109 题意:求一个整数k,使得k满足kn=p. 思路:exp()用来计算以e为底的x次方值,即ex值,然后将结果返回.log是自然对数,就 ...

  5. POJ - 2109 Power of Cryptography(高精度log+二分)

    Current work in cryptography involves (among other things) large prime numbers and computing powers ...

  6. POJ 2109 Power of Cryptography【高精度+二分 Or double水过~~】

    题目链接: http://poj.org/problem?id=2109 参考: http://blog.csdn.net/code_pang/article/details/8263971 题意: ...

  7. POJ 2109 Power of Cryptography 大数,二分,泰勒定理 难度:2

    import java.math.BigInteger; import java.util.Scanner; public class Main { static BigInteger p,l,r,d ...

  8. Poj 2109 / OpenJudge 2109 Power of Cryptography

    1.Link: http://poj.org/problem?id=2109 http://bailian.openjudge.cn/practice/2109/ 2.Content: Power o ...

  9. POJ 2109 :Power of Cryptography

    Power of Cryptography Time Limit: 1000MS   Memory Limit: 30000K Total Submissions: 18258   Accepted: ...

随机推荐

  1. Java秒杀实战 (六) 服务级高并发秒杀优化(RabbitMQ+接口优化)

    转自:https://blog.csdn.net/qq_41305266/article/details/81146716 一.思路:减少数据库访问 1.系统初始化,把商品库存数量加载到Redis 2 ...

  2. mysql启动失败“MySQL Daemon failed to start”

    CentOS上,用命令:service mysqld restart 启动mysql报错: # service mysqld restart Stopping mysqld: [ OK ] MySQL ...

  3. 解释mysql 语句

    一.在我们创建mysql数据库的时候我们经常会用到这句SQL: CREATE DATABASE TEST DEFAULT CHARACTER SET utf8 COLLATE utf8_general ...

  4. 简单介绍 Java 构造器

    导读 构造器是编程的强大组件.使用它们来释放 Java 的全部潜力. 在开源.跨平台编程领域,Java 无疑(?)是无可争议的重量级语言.尽管有许多伟大的跨平台框架,但很少有像 Java 那样统一和直 ...

  5. 05_ Flume多级Agent之间串联案例

    多级agent之间串联: 从tail命令获取数据发送到avro端口,另一个节点可配置一个avro源来获取数据,发送外部存储 启动两个Agent节点: 使用scp命令拷贝flume安装包到另一台虚拟机; ...

  6. Linux查找并杀死僵尸进程(转)

    1.查看系统是否有僵尸进程 使用Top命令查找,当zombie前的数量不为0时,即系统内存在相应数量的僵尸进程. 2.定位僵尸进程 使用命令ps -A -ostat,ppid,pid,cmd |gre ...

  7. 数据结构课后练习题(练习三)7-5 Tree Traversals Again (25 分)

    7-5 Tree Traversals Again (25 分)   An inorder binary tree traversal can be implemented in a non-recu ...

  8. CentOS7 - Package does not match intended download 问题解决

    yum 安装软件,有时会出现 Error: Package does not match intended download,这时需要彻底清除已有的下载,然后重新安装即可. $ sudo yum cl ...

  9. jenkins"控制台输出"乱码问题解决

    今天在搭建Jenkins环境时,安装完Tomcat.Jenkins.创建项目进行构建后,在查看控制台输出时,结果中文全部显示乱码.然后呢,就是漫长的解决历程,最终呢,解决乱码问题的时间终于超过了环境搭 ...

  10. P5650 基础字符串练习题

    设定'0'权值为1,设定'1'权值为-1 然后就是最大子段和 #include <cstdio> #include <algorithm> #include <cstri ...