title: 【概率论】4-1:随机变量的期望(The Expectation of a Random Variable Part I)

categories:

- Mathematic

- Probability

keywords:

  • Expectation

    toc: true

    date: 2018-03-20 09:48:55



Abstract: 本文主要介绍期望的基础之知识,第一部分介绍连续和离散随机变量的期望。

Keywords: Expectation

开篇废话

好像大家比较喜欢关于学习方面的废话,那么以后就不说社会现象了,哈哈哈。

期望是整个这一章的基础,概率论学习例子最重要,前面几节例子都写的不多,所以让大家多看书,博客只能算个总结性的东西,而期望这个概念更是需要用练习去理解,我做数学的目的是为了研究机器学习,不是为了做习题,但是做习题是最快速的学数学的方法。

为了使得基础扎实,所以把本来可以一篇完成的博客拆分成了两篇,第一篇写离散和连续随机变量的期望,下一篇写随机变量函数的期望。

本章引言

一个随机变量的全部信息被保存在他的分布中,当事件到随机变量的确定后,随机变量的分布唯一描述这个随机变量的全部性质。

但是整个分布包含太多信息了,比如一个复杂的分布,参数可能有几百上千个,有些性质就变得不那么明显了。

举个通俗的例子,我们描述一个人的身材(把身材当做随机变量),最完整的方法就像做CT,把整个人的三维模型数据采集出来,这就相当于其分布函数,但是这个数据量也好,耗时也好,都是非常大的,而且有些数据也没啥大作用,我们可能只关心这个人的射高体重,就能大概猜测出来这个人的大概样子,而不关心他的脑袋有多大,眼睛有多大。

这个例子是个很通俗的解释,但是类比的很恰当(为自己鼓掌)。

我们的目的就像找到身材中的身高和体重一样,找到分布中的某几个关键数值,这些数值可以反映出分布的某些重要性质——期望!

Expectation for a Discrete Distribution

先举个不切实际的例子,买股票,通过某种计算,我们知道了某只股票的赚钱的分布,只有两种请款个,一种是赚10块钱,概率是90%,一种是赔100块钱,概率是10%。那么我们要不要买这只股票。

分析,首先事件是两个,一个是赚10元,一个是赔100,那么我们把这两个事件映射成随机变量 10,-100,那么离散分布:Pr(10)=0.9,Pr(−100)=0.1Pr(10)=0.9,Pr(-100)=0.1Pr(10)=0.9,Pr(−100)=0.1 我们可能赚多少钱,相当于随机变量的加权平均,也就是 E=10×0.9+(−100)×0.1=−1E=10\times 0.9+(-100)\times 0.1 =-1E=10×0.9+(−100)×0.1=−1 我们买这只股票的赚钱期望值是-1 ,这个-1其实是没有意义的,因为我们从事件到随机变量的映射其实只做了两个事件的一对一映射,我们得到的 -1 这个随机变量根本不知道对应什么事件,但是我们可以把第一步的从事件到随机变量的映射改成一个线性的函数,也就是收益 aaa (可正可负)对应是随机变量是 X=aX=aX=a 那么这样就存在逆映射,随机变量-1对应赔了一块钱。

Definition Mean of Bounded Discrete Random Variable. Let XXX be a bounded discrete random variable whose p.f. is fff .the expectation of XXX denoted by E(X)E(X)E(X) ,is a number define as follow:

E(X)=∑All xxf(x)
E(X)=\sum_{\text{All }x}xf(x)
E(X)=All x∑​xf(x)

The expectation of XXX is also referred to as the mean of XXX or the expected value of XXX

上面定义了一个有限的离散分布的期望,每个分布对应唯一的期望,有限的离散分布都有期望,但是后面要说的连续的分布可能没有期望。

一个例子,但是很重要,重要到可以当做一个定理:

一个随机变量X有一个参数为p的伯努利分布,那么他的期望是什么?

E(X)=p×1+(1−p)×0=p
E(X)=p\times 1+(1-p)\times 0=p
E(X)=p×1+(1−p)×0=p

简单的例子,但是是后面很多求解的基础组成,这个值得我们关注一下。

上面我们讲的都是有限个离散分布的情况,当X是无限的时候其实也可以求期望,也就是求所有可能的值的加权平均数

Definition Mean of General Discrete Random Variable. Let X be a discrete random variable whose p.f. is f.Suppose that at least one of the following sums is finite:

∑Positive xxf(x),∑Negative xxf(x)
\sum_{\text{Positive }x}xf(x) , \sum_{\text{Negative }x}xf(x)
Positive x∑​xf(x),Negative x∑​xf(x)

Then the mean,expectation,or expected value of XXX is said to exist and is defined to be

E(x)=∑All xxf(x)
E(x)=\sum_{\text{All } x}xf(x)
E(x)=All x∑​xf(x)

以上为节选内容,完整原文地址:https://www.face2ai.com/Math-Probability-4-1-The-Expectation-of-a-Random-Variable-P1转载请标明出处

【概率论】4-1:随机变量的期望(The Expectation of a Random Variable Part I)的更多相关文章

  1. 【概率论】4-1:随机变量的期望(The Expectation of a Random Variable Part II)

    title: [概率论]4-1:随机变量的期望(The Expectation of a Random Variable Part II) categories: - Mathematic - Pro ...

  2. 【概率论】3-8:随机变量函数(Functions of a Random Variable)

    title: [概率论]3-8:随机变量函数(Functions of a Random Variable) categories: Mathematic Probability keywords: ...

  3. 【概率论】3-9:多随机变量函数(Functions of Two or More Random Variables)

    title: [概率论]3-9:多随机变量函数(Functions of Two or More Random Variables) categories: - Mathematic - Probab ...

  4. 【概率论】3-1:随机变量和分布(Random Variables and Discrete Distributions)

    title: [概率论]3-1:随机变量和分布(Random Variables and Discrete Distributions) categories: Mathematic Probabil ...

  5. 最大期望算法 Expectation Maximization概念

    在统计计算中,最大期望(EM,Expectation–Maximization)算法是在概率(probabilistic)模型中寻找参数最大似然估计的算法,其中概率模型依赖于无法观测的隐藏变量(Lat ...

  6. 【概率论】3-2:连续分布(Continuous Distributions)

    title: [概率论]3-2:连续分布(Continuous Distributions) categories: Mathematic Probability keywords: Continuo ...

  7. 图解AI数学基础 | 概率与统计

    作者:韩信子@ShowMeAI 教程地址:http://www.showmeai.tech/tutorials/83 本文地址:http://www.showmeai.tech/article-det ...

  8. Machine Learning and Data Mining(机器学习与数据挖掘)

    Problems[show] Classification Clustering Regression Anomaly detection Association rules Reinforcemen ...

  9. 学习笔记DL008:概率论,随机变量,概率分布,边缘概率,条件概率,期望、方差、协方差

    概率和信息论. 概率论,表示不确定性声明数学框架.提供量化不确定性方法,提供导出新不确定性声明(statement)公理.人工智能领域,概率法则,AI系统推理,设计算法计算概率论导出表达式.概率和统计 ...

随机推荐

  1. Qt实现艺术字效果

    Qt实现艺术字效果,通常有三种方式,一种是通过绘制机制,另外一种是使用样式表,最后一种是通过图片代替,本次介绍使用绘制来实现艺术字效果. 代码如下(分两种实现): 第一种: QPainter pain ...

  2. SpringBoot 第一篇:HelloWorld 跑起来

    背景 金融行业从业快十年,作为银行系开发人员来说开源框架了解不多非常正常,因为银行系的运行平台,基本上不会采购小厂商集合开源框架自建的产品,竞标的产品没有几十个成功案例,你也进不了这个门槛(有关系的除 ...

  3. SpringCloud Eureka 配置

    修改 Eureka server 注册中心上面显示的服务名称 参数配置 默认值     说明 服务注册中心配置   Bean类:org.springframework.cloud.netflix.eu ...

  4. 怎样用sql语句复制表table1到表table2的同时复制主键

    原文:怎样用sql语句复制表table1到表table2的同时复制主键 在从table1表复制到table2的时候,我们会用语句: select * into table2 from table1 但 ...

  5. ASP.NET Core 入门(4)(IIS 部署前后端站点)

    .NET Core发布部署的文章园内有很多了,大家可以自行百度,该篇主要想总结需要注意的地方,列举前后端(比如前段 Vue,后端 WebAPI)在同一台服务器上的主要两种方式. 两种方式: 1. 前后 ...

  6. 在函数作用域嵌套下使用this

    var myObj = {    specialFunction: function () {        console.log("specialFunction.");   ...

  7. default(Nullable(type)) vs default(type)

    default(Nullable<long>) == null default(long?) == null default(long) == 0L

  8. docker系列之六容器数据卷

    docker之容器数据卷 一.容器数据卷 docker容器运行的时候,会产生一系列的文件,那么我们希望容器产生的数据能提供给其他的容器使用,也就是说怎么实现容器间的数据的共享呢?这就需要用到我们所提到 ...

  9. 2.Java集合-ConcurrentHashMap实现原理及源码分析

    一.为何用ConcurrentHashMap 在并发编程中使用HashMap可能会导致死循环,而使用线程安全的HashTable效率又低下. 线程不安全的HashMap 在多线程环境下,使用HashM ...

  10. python 解析Hdfs上的数据文件

    python想直接读取hadoop上的文件内容,一番操作,头发掉了几根,也没能解析出来parquet文件类型的文件. 本博文简单讲解一下TEXTFILE文件格式的解析: 需要安装模块hdfs from ...