Hadoop_18_MapRduce 内部的shuffle机制
1.Mapreduce的shuffle机制:
Mapreduce中,map阶段处理的数据如何传递给Reduce阶段,是mapreduce框架中最关键的一个流程,这个流程就叫shuffle
将maptask处理后的输出结果数据,分发给reducetask,并在分发的过程中,对数据按key进行了分区和排序

MapReduce程序的执行过程分为两个阶段:Mapper阶段和Reducer阶段。
1.MapReduce的Map阶段:
1.1.从HDFS读取数据:
由FileInputFormat实现类的getSplits()方法将待处理数据执行逻辑切片,默认切片的类为FileInputFormat,通过切片
输入文件将会变成split1、split2、split3……随后对输入切片split按照一定的规则解析成键值对<k1,v1>,在MapTask进行读取
数据时,其中默认处理的类为TextInputFormat,并通过记录读取器RecordReader的read()方法一次读取一行,并返回key和
value,其中k1就是读到的一行文本的起始偏移量,v1就是行文本的内容。
调用自己编写的Map逻辑,Maptask会对每一行<k1,v1>输入数据调用一次我们自定义的map()方法,
Map使用context.write输出键值对<k2,v2>,其输出结果由OutPutCollector将每个Map任务的键值对输出到内存所构造
的一个环形缓冲区中,其数据结构其实就是个字节数组,叫Kvbuffer,Mapper中的Kvbuffer的大小默认100M,spill一般会在
Buffer空间大小的80%开始进行spill溢出到文件,在溢出之前,按照一定的规则对输出的键值对<k2,v2>进行分区:分区的规
则是针对k2进行的,比如说k2如果是省份的话,那么就可以按照不同的省份进行分区,同一个省份的k2划分到一个区,注意:
默认分区的类是HashPartitioner类,这个类默认只分为一个区,因此Reducer任务的数量默认也是1.注意:如reduce要求得
到的是全局的结果,则不适合分区!然后再对每个分区中的键值对进行排序;注意:所谓排序是针对k2进行的,v2是不参与排
序的,如果要让v2也参与排序,需要自定义排序的类,此时得到的溢出文件分区且区内有序;不断溢出,不断形成溢出文件;
在MapTask结束前会对这些spill溢出文件进行归并排序Merge,形成MapTask的最终结果文件
注:Combiner存在的时候,此时会根据Combiner定义的函数对map的结果进行合并
由于job的每一个map都会根据reduce(n)数将数据输出结果分成n个partition,hadoop中是等job的第一个map结束后,
所有的reduce就开始尝试从完成的map中下载该reduce对应的partition部分数据(网络传输)到ReduceTask的本地磁盘工作
目录,当所有map输出都拷贝完毕之后,所有数据被最后合并成一个整体有序的文件,作为reduce任务的输入,Reducetask
真正进入reduce函数的计算阶段
Reduce在这个阶段,框架为已分组的输入数据中的每个 <key, (list of values)>对调用一次 reduce()方法。Reduce
任务的输出通常是通过调用 OutputCollector.collect(WritableComparable,Writable)写入文件系统
注意:Shuffle中的缓冲区大小会影响到mapreduce程序的执行效率,原则上说,缓冲区越大,磁盘io的次数越少,执行速
度就越快缓冲区的大小可以通过参数调整, 参数:io.sort.mb 默认100M
2.Mapreduce中的Combiner:
(1)combiner是MR程序中Mapper和Reducer之外的一种组件
(2)combiner组件的父类就是Reducer
(3)combiner和reducer的区别在于运行的位置:
Combiner是在每一个maptask所在的节点运行
Reducer是接收全局所有Mapper的输出结果;
(4) combiner的意义就是对每一个maptask的输出进行局部汇总,以减小网络传输量
具体实现步骤:
1、 自定义一个combiner继承Reducer,重写reduce方法
2、 在job中设置: job.setCombinerClass(CustomCombiner.class)
(5) combiner能够应用的前提是不能影响最终的业务逻辑而且,combiner的输出kv应该跟reducer的输入kv类型要
对应起来
Combiner的使用要非常谨慎因为combiner在mapreduce过程中可能调用也肯能不调用,可能调一次也可能调多次所以:
combiner使用的原则是:有或没有都不能影响业务逻辑
参考文章:https://blog.csdn.net/aijiudu/article/details/72353510
Hadoop_18_MapRduce 内部的shuffle机制的更多相关文章
- Hadoop(17)-MapReduce框架原理-MapReduce流程,Shuffle机制,Partition分区
MapReduce工作流程 1.准备待处理文件 2.job提交前生成一个处理规划 3.将切片信息job.split,配置信息job.xml和我们自己写的jar包交给yarn 4.yarn根据切片规划计 ...
- Shuffle 机制
1. 概述 Map 方法之后,Reduce 方法之前的数据处理过程称之为 Shuffle. 2. Partition 分区 需求:要求将统计结果按照条件输出到不同文件中(分区).比如:将统计结果按照手 ...
- shuffle机制和TextInputFormat分片和读取分片数据(九)
shuffle机制 1:每个map有一个环形内存缓冲区,用于存储任务的输出.默认大小100MB(io.sort.mb属性),一旦达到阀值0.8(io.sort.spill.percent),一个后台线 ...
- 【Spark】Spark的Shuffle机制
MapReduce中的Shuffle 在MapReduce框架中,shuffle是连接Map和Reduce之间的桥梁,Map的输出要用到Reduce中必须经过shuffle这个环节,shuffle的性 ...
- Qt 的内部进程通信机制
Qt 的内部进程通信机制 续欣 (xxin76@hotmail.com), 博士.大学讲师 2004 年 4 月 01 日 Qt 作为一种跨平台的基于 C++ 的 GUI 系统,能够提供给用户构造图形 ...
- AsnycTask的内部的实现机制
AsnycTask的内部的实现机制 写在前面 我们为什么要用AsnycTask. 在Android程序开始运行的时候会单独启动一个进程,默认情况下所有 这个程序操作都在这个进程中进行.一个Androi ...
- MapReduce实例2(自定义compare、partition)& shuffle机制
MapReduce实例2(自定义compare.partition)& shuffle机制 实例:统计流量 有一份流量数据,结构是:时间戳.手机号.....上行流量.下行流量,需求是统计每个用 ...
- MapReduce(五) mapreduce的shuffle机制 与 Yarn
一.shuffle机制 1.概述 (1)MapReduce 中, map 阶段处理的数据如何传递给 reduce 阶段,是 MapReduce 框架中最关键的一个流程,这个流程就叫 Shuffle:( ...
- Spark Shuffle机制详细源码解析
Shuffle过程主要分为Shuffle write和Shuffle read两个阶段,2.0版本之后hash shuffle被删除,只保留sort shuffle,下面结合代码分析: 1.Shuff ...
随机推荐
- JUC AQS ReentrantLock源码分析
警告⚠️:本文耗时很长,先做好心理准备,建议PC端浏览器浏览效果更佳. Java的内置锁一直都是备受争议的,在JDK1.6之前,synchronized这个重量级锁其性能一直都是较为低下,虽然在1.6 ...
- Linear regression with one variable - Model representation
摘要: 本文是吴恩达 (Andrew Ng)老师<机器学习>课程,第二章<单变量线性回归>中第6课时<模型概述>的视频原文字幕.为本人在视频学习过程中逐字逐句记录下 ...
- vue实现文件上传
<!-- multiple多个文件上传 accept文件类型--> <input type="file" @change="addFile" ...
- linux netfilter
yum -y install iptables//三张表 filter nat mangle [root@wang /]# iptables -t filter -nvL [root@wang /]# ...
- SQL 查询建表SQL
1.新建一个查询语句,按执行按钮 2.结果页面会显示一条sql语句,复制该语句即可建表 3.建表测试
- centos7服务搭建常用服务配置之二:Rsync+sersync实现数据实时同步
目录 1.RSYNC数据备份 1.1 rsync服务简介 1.2 rsync特点和优势 1.3 rysnc运行模式简介 1.4 数据同步方式 2 Rsync实验测试 2.1 实验环境说明 2.2 服务 ...
- 《MIT 6.828 Lab 1 Exercise 4》实验报告
本实验链接:mit 6.828 lab1 Exercise 4. 题目 Exercise 4. Read about programming with pointers in C. The best ...
- fzu1704(高斯消元法解异或方程组+高精度输出)
题目链接:https://vjudge.net/problem/FZU-1704 题意:经典开关问题,求使得灯全0的方案数. 思路:题目保证至少存在一种方案,即方程组一定有解,那么套上高斯消元法的板子 ...
- [转帖]SSH远程登录配置文件sshd_config详解
SSH远程登录配置文件sshd_config详解 2016年06月02日 17:42:25 Field_Yang 阅读数 61386 版权声明:本文为博主原创文章,遵循CC 4.0 by-sa版权 ...
- java-监听器(Listener)
监听器:用于监听web应用中某些对象.信息的创建.销毁等动作,服务器会自动调用相应的方法进行处理.常用于统计在线人数,初始化系统参数等. Javaweb监听器主要监听对象有ServletContext ...