BZOJ 4569 [Scoi2016]萌萌哒 ——ST表 并查集
好题。
ST表又叫做稀疏表,这里利用了他的性质。
显然每一个条件可以分成n个条件,显然过不了。
然后发现有许多状态是重复的,首先考虑线段树,没什么卵用。
然后ST表,可以每一层表示对应的区间大小的两个部分是否合并,如果合并就不向下递归。
然后可以剪去许多状态,变成了$O(nlogn)$的。
#include <cstdio>
#include <cstring>
#include <iostream>
#include <algorithm> using namespace std;
#define maxn 100005
#define ll long long
#define md 1000000007
#define F(i,j,k) for (int i=j;i<=k;++i) int f[maxn][21],n,m,l1,r1,l2,r2,lg[maxn]; int gf(int a,int t)
{
if (f[a][t]==a) return a;
else return f[a][t]=gf(f[a][t],t);
} void merge(int a,int b,int t)
{
int fa=gf(a,t),fb=gf(b,t);
if (fa==fb) return ;
f[fa][t]=fb; if (!t) return ;
merge(a,b,t-1);merge(a+(1<<(t-1)),b+(1<<(t-1)),t-1);
} int main()
{
scanf("%d%d",&n,&m);
F(i,2,n) lg[i]=lg[i>>1]+1;
F(i,1,n) F(j,0,lg[n]) f[i][j]=i;
while(m--)
{
scanf("%d%d%d%d",&l1,&r1,&l2,&r2);
int tmp=lg[r1-l1+1];merge(l1,l2,tmp);
merge(r1-(1<<tmp)+1,r2-(1<<tmp)+1,tmp);
}
int cnt=0,ans=9;
F(i,1,n) if (f[i][0]==i) cnt++; cnt--;
while(cnt--) {ans=(ll)ans*10%md;}
printf("%d\n",ans);
}
BZOJ 4569 [Scoi2016]萌萌哒 ——ST表 并查集的更多相关文章
- BZOJ 4569 [Scoi2016]萌萌哒 | ST表 并查集
传送门 BZOJ 4569 题解 ST表和并查集是我认为最优雅(其实是最好写--)的两个数据结构. 然鹅!他俩加一起的这道题,我却--没有做出来-- 咳咳. 正解是这样的: 类似ST表有\(\log ...
- 【BZOJ 4569】 4569: [Scoi2016]萌萌哒 (倍增+并查集)
4569: [Scoi2016]萌萌哒 Time Limit: 10 Sec Memory Limit: 256 MBSubmit: 865 Solved: 414 Description 一个长 ...
- 【BZOJ-4569】萌萌哒 ST表 + 并查集
4569: [Scoi2016]萌萌哒 Time Limit: 10 Sec Memory Limit: 256 MBSubmit: 459 Solved: 209[Submit][Status] ...
- bzoj 4569 [Scoi2016]萌萌哒 并查集 + ST表
题目链接 Description 一个长度为\(n\)的大数,用\(S_1S_2S_3...S_n\)表示,其中\(S_i\)表示数的第\(i\)位,\(S_1\)是数的最高位,告诉你一些限制条件,每 ...
- bzoj4569: [Scoi2016]萌萌哒(ST表+并查集)
好喵喵的题 将一个要求用ST表分割成logn个要求,如果把f[i][j]和f[u][v]在同一个集合,那么f[i][j-1]和f[u][v-1],f[i+2^(j-1)][j-1]和f[u][u+2^ ...
- bzoj 4569: [Scoi2016]萌萌哒
Description 一个长度为n的大数,用S1S2S3...Sn表示,其中Si表示数的第i位,S1是数的最高位,告诉你一些限制条件,每个条 件表示为四个数,l1,r1,l2,r2,即两个长度相同的 ...
- BZOJ4569 SCOI2016萌萌哒(倍增+并查集)
一个显然的暴力是用并查集记录哪些位之间是相等的.但是这样需要连nm条边,而实际上至多只有n条边是有用的,冗余过多. 于是考虑优化.使用类似st表的东西,f[i][j]表示i~i+2^j-1与f[i][ ...
- 洛谷P3295 [SCOI2016]萌萌哒(倍增+并查集)
传送门 思路太妙了啊…… 容易才怪想到暴力,把区间内的每一个数字用并查集维护相等,然后设最后总共有$k$个并查集,那么答案就是$9*10^{k-1}$(因为第一位不能为0) 考虑倍增.我们设$f[i] ...
- [SCOI2016]萌萌哒(倍增+并查集)
当区间\([a,b]\)和\([c,d]\)对应相等时. 我们把两个区间对应位置上的数所在并查集合并. 最后并查集的数量为\(num\)答案就是\(9*10^num\)因为是个数,不能有前置\(0\) ...
随机推荐
- Oracle 系统表
--如果一个表拥有DBA\\ALL\\USERS三个前缀 --DBA_前缀表示DBA拥有的或者可以访问的所有关系表 --ALL_前缀表示当前用户做拥有的或者可以访问的所有关系表 --USERS-前缀表 ...
- zabbix告警时间和恢复时间相同的解决方法
出现原因:在动作,恢复操作中,恢复时间成了{EVENT.DATE} {EVENT.TIME},所以和告警时间相同. 解决方法:将{EVENT.DATE}{EVENT.TIME}改成{EVENT.DAT ...
- BZOJ3679: 数字之积(数位dp)
题意 题目链接 Sol 推什么结论啊. 直接大力dp,$f[i][j]$表示第$i$位,乘积为$j$,第二维直接开map 能赢! /* */ #include<iostream> #inc ...
- django+xadmin在线教育平台(二)
老话总是没错的,工欲善其事,必先利其器 教你安装pycharm,mysql,navicat,python相关环境. windows下搭建开发环境 2-1 pycharm,mysql,Navicat安装 ...
- Python Flask搭建一个视频网站实战视频教程
点击了解更多Python课程>>> Python Flask搭建一个视频网站实战视频教程 第1章 课程介绍 第2章 预备开发环境 第3章 项目分析.建立目录及模型规划 第4章 建立前 ...
- 用express框架实现反向代理
目前很多公司开发都是前后台分离开发,于是我用node起了一个服务,用node中的express框架实现了反向代理.(通俗易懂的讲就是我在我的电脑访问不到后台同事的电脑接口,这样做以后就可以在我本地访问 ...
- Flask初学者:g对象,hook钩子函数
Flask的g对象 作用:g可以可以看作是单词global的缩写,使用“from flask import g”导入,g对象的作用是保存一些在一次请求中多个地方的都需要用到的数据,这些数据可能在用到的 ...
- Bomb HDU - 3555 (数位DP)
Bomb HDU - 3555 (数位DP) The counter-terrorists found a time bomb in the dust. But this time the terro ...
- c++ 操作符优先级
优先级 操作符 描述 例子 结合性 1 ()[]->.::++-- 调节优先级的括号操作符数组下标访问操作符通过指向对象的指针访问成员的操作符通过对象本身访问成员的操作符作用域操作符后置自增操作 ...
- Mysql存储过程中的事务回滚
create procedure test(in a int) BEGIN ; ;-- 异常时设置为1 START TRANSACTION; ,); ,); THEN ROLLBACK; ELSE C ...