题意:

已知未来 N 天的股票走势,第 i 天最多买进 as [ i ] 股每股 ap [ i ] 元,最多卖出 bs [ i ] 股每股 bp [ i ] 元,且每天最多拥有 Mp 股,且每两次交易至少需要相隔 W 天,求最多能赚多少钱。

细节:

1、初始情况下有无限的资金,但是不能算作赚的钱。

2、对于交易的定义为:买进一次股或者买出一次股,也就是不能在同一天进行两种操作。

分析:

这题目根据题意不难发现它必定存在重复子结构,而且对于后面买卖股票的过程不会影响前方的收益情况,可以得到这可以用动态规划解决。

状态的构建也是显然的:dp [ i ][ j ] 表示第 i 天拥有 j 股的最大价值。

1、初值->负无穷???

若是 0 则在转移的时候将不会出现在没有赚钱的情况下去买股票的情况。

且每个可行状态 dp [ i ][ j ] = -ap [ i ] × j ( 0 ⩽ j ⩽ as [ i ] )

2、当前不买也不卖-> dp [ i ][ j ] = max ( dp [ i - 1 ][ j ], dp[ i ][ j ] )

3、当前需要买进股票,由于有 W 天间隔的限制,所以不难发现我们需要枚举当前这次贸易需要从哪一次交易转移而来,但是由于有第二类情况的存在,其实第 0 至 i - W - 1 这几天的交易最优值是单调不降的,所以最优的价值一定可以从 i - W - 1 天的状态转移而来,所以转移:

dp [ i ][ j ] = max ( dp [ i ][ j ] , dp[ i - W - 1 ][ k ] - ( j - k ) × ap [ i ] )

( max ( 0 , j - as [ i ] ) ⩽ k ⩽ j )

4、当前需要卖出股票,转移就是:

dp [ i ][ j ] = max ( dp [ i ][ j ] , dp[ i - W - 1 ][ k ] + ( k - j ) × bp [ i ] )

( j ⩽ k ⩽ min( Mp , j + bs [ i ] ) )

成功的写出了朴素的动态规划方程,现在考虑优化,由于 N ≤ 2000Mp ≤ 2000 这个 2D / 1D 的动态规划显然不能 AC ,比如把 3 的式子进行转化:

dp [ i ][ j ] = max { dp [ i - W - 1][ k ] + k × ap [ i ] } - j × ap [ i ]

显然又转化成一个定区间求最值的模型,就可以使用单调队列解决了,4 式的转化同理可得,在转移时可以令 jMp 开始往 0 进行转移,按序加入队列中。

代码:

#include<bits/stdc++.h>
#define Inf 1000000000
#define MAXN 2005
using namespace std; int f[MAXN][MAXN], ap[MAXN], bp[MAXN], as[MAXN], bs[MAXN];
int n, Mp, w, que1[MAXN], que2[MAXN]; int main(){
scanf("%d%d%d", &n, &Mp, &w);
for (int i=1; i<=n; i++) scanf("%d%d%d%d", &ap[i], &bp[i], &as[i], &bs[i]);
for (int i=0; i<=n; i++)
for (int j=0; j<=Mp; j++) f[i][j]=-Inf;
for (int i=1; i<=n; i++)
for (int j=0; j<=as[i]; j++) f[i][j]=-j*ap[i];
for (int i=1; i<=n; i++){
for (int j=0; j<=Mp; j++) f[i][j]=max(f[i][j], f[i-1][j]);
int head1=1, head2=1, tail1=0, tail2=0;
for (int j=0; j<=Mp; j++){
while (head1<=tail1 && que1[head1]<max(j-as[i], 0)) ++head1;
if (head1<=tail1) f[i][j]=max(f[i][j], f[max(0, i-w-1)][que1[head1]]-(j-que1[head1])*ap[i]);
while (head1<=tail1 && f[max(i-w-1, 0)][que1[tail1]]+que1[tail1]*ap[i]<=f[max(i-w-1, 0)][j]+j*ap[i]) --tail1;
que1[++tail1]=j;
}
for (int j=Mp; j>=0; j--){
while (head2<=tail2 && que2[head2]>min(Mp, j+bs[i])) ++head2;
if (head2<=tail2) f[i][j]=max(f[i][j], f[max(0, i-w-1)][que2[head2]]+(que2[head2]-j)*bp[i]);
while (head2<=tail2 && f[max(i-w-1, 0)][que2[tail2]]+que2[tail2]*bp[i]<=f[max(0, i-w-1)][j]+j*bp[i]) --tail2;
que2[++tail2]=j;
}
}
int Ans=-Inf;
for (int i=0; i<=Mp; i++) Ans=max(Ans, f[n][i]);
printf("%d\n", Ans);
return 0;
}

Luogu 2569 [SCOI2010]股票交易 (朴素动规转移 + 单调队列优化)的更多相关文章

  1. 洛谷 P2569[SCOI2010]股票交易(动规+单调队列)

    //只能写出裸的动规,为什么会有人能想到用单调队列优化Orz 题目描述 最近lxhgww又迷上了投资股票,通过一段时间的观察和学习,他总结出了股票行情的一些规律. 通过一段时间的观察,lxhgww预测 ...

  2. BZOJ1855或洛谷2569 [SCOI2010]股票交易

    一道单调队列优化\(DP\) BZOJ原题链接 洛谷原题链接 朴素的\(DP\)方程并不难想. 定义\(f[i][j]\)表示到第\(i\)天,手上持有\(j\)股时的最大收益. 转移方程可以分成四个 ...

  3. Luogu P2569 [SCOI2010] 股票交易

    此题链接到dp常见优化方法 开始的时候被纪念品误导,以为是多支股票,后来发现事情不妙: 这道题知道的是某一只股票的走势: \(Solution\): \(70pts\): 设\(f[i][j]\)表示 ...

  4. LUOGU P2569 [SCOI2010]股票交易(单调队列优化dp)

    传送门 解题思路 不难想一个\(O(n^3)\)的\(dp\),设\(f_{i,j}\)表示第\(i\)天,手上有\(j\)股的最大收益,因为这个\(dp\)具有单调性,所以\(f_i\)可以贪心的直 ...

  5. 1855: [Scoi2010]股票交易[单调队列优化DP]

    1855: [Scoi2010]股票交易 Time Limit: 5 Sec  Memory Limit: 64 MBSubmit: 1083  Solved: 519[Submit][Status] ...

  6. P2569 [SCOI2010]股票交易 dp 单调队列优化

    LINK:股票交易 题目确实不算难 但是坑点挺多 关于初值的处理问题我就wa了两次. 所以来谢罪. 由于在手中的邮票的数量存在限制 且每次买入卖出也有限制. 必然要多开一维来存每天的邮票数量. 那么容 ...

  7. 2018.09.10 bzoj1855: [Scoi2010]股票交易(单调队列优化dp)

    传送门 单调队列优化dp好题. 有一个很明显的状态设置是f[i][j]表示前i天完剩下了j分股票的最优值. 显然f[i][j]可以从f[i-w-1][k]转移过来. 方程很好推啊. 对于j<kj ...

  8. bzoj1855: [Scoi2010]股票交易 单调队列优化dp ||HDU 3401

    这道题就是典型的单调队列优化dp了 很明显状态转移的方式有三种 1.前一天不买不卖: dp[i][j]=max(dp[i-1][j],dp[i][j]) 2.前i-W-1天买进一些股: dp[i][j ...

  9. 【Luogu】P2569股票交易(单调队列优化DP)

    题目链接 首先这题可以肯定的是朴素DP秒出.然后单调队列优化因为没接触过所以不会emmm 而且脑补没补出来 坐等四月省选倒数第一emmm 心态爆炸,偷懒放题解链接 #include<cstdio ...

随机推荐

  1. Macbook上sublime的C++11弥补bits/stdc++.h的配置

    如果在windows配置过的话这次会容易很多.相关博客很多了,我这里保存一下我借鉴并成功的配置: 关于自己build的C++,文件类型为sublime-build,直接扔在它给出的user文件夹即可, ...

  2. how browser handler file:/// link

    1. why browser can only open .txt file directly, pop up open or save dialog for others? 2. html cann ...

  3. vue.js 中如何解除绑定事件

    我们项目中有一个点赞需求,只允许点击一次赞,再次点击则取消赞, 为了防止用户多次连续点击,在点赞后需要解绑事件,成功调取API后,才可再次点击取消赞. 目前用的方法是加入一个flag控制点击事件可否点 ...

  4. [译]Understanding ECMAScript 6 内容目录

    说明 浏览器与Node.js兼容 这本书是写给谁的 概述 帮助与支持 基本知识 更好的Unicode支持 其他字符串变化 其他正则表达式变化 Object.is() 块绑定 解构赋值 数字 总结 函数 ...

  5. 06.Javascript——入门this的用法(难点)

    this 的指向 this 是 js 中定义的关键字,它自动定义于每一个函数域内,但是它的指向却让人很迷惑.在实际应用中,this 的指向大致可以分为以下四种情况. 1.作为普通函数调用 当函数作为一 ...

  6. Ubuntu系统下安装字体和切换默认字体的方法

    参考链接:http://my.oschina.net/itblog/blog/278566 打开Ubuntu的软件中心,搜索:tweak,安装[Unity Tweak Tool]这款软件,如图(由于我 ...

  7. PeopleSoft FSCM Production Support 案例分析之一重大紧急事故发生时的应对策略

    案例背景: 今天一大早用户打电话来讲昨天上传的银行的forex payment return file好像没有被处理到,我一听就觉得纳闷,因为昨天晚上operator也没有给我打电话啊(如果有job ...

  8. 《Python基础教程》 读书笔记 第九章 魔法方法、属性和迭代器(上)

    构造方法 在Python中创建一个构造方法很容易.只要把init方法的名字从简单的init修改为魔法版本__init__即可: >>> class FooBar: ...     d ...

  9. (三)mybatis之对Hibernate初了解

    前言:为什么会写Hibernate呢?因为HIbernate跟Mybatis一样,是以ORM模型为核心思想的,但是这两者有相似的地方也有差异的地方.通过这两种框架的比对,可以对mybatis有着更深的 ...

  10. Core Foundation 框架

    Core Foundation框架 (CoreFoundation.framework) 是一组C语言接口,它们为iOS应用程序提供基本数据管理和服务功能.下面列举该框架支持进行管理的数据以及可提供的 ...