题目描述

You are in charge of a team that inspects a new ski resort. A ski resort is situated on several mountains and consists of a number of slopes. Slopes are connected with each other, forking and joining. A map of the ski resort is represented as an acyclic directed graph. Nodes of the graph represent different points in ski resort and edges of the graph represent slopes between the points, with the direction of edges going downwards. 
Your team has to inspect each slope of the ski resort. Ski lifts on this resort are not open yet, but you have a helicopter. In one fiight the helicopter can drop one person into any point of the resort. From the drop off point the person can ski down the slopes, inspecting each slope as they ski. It is fine to inspect the same slope multiple times, but you have to minimize the usage of the helicopter. So, you have to figure out how to inspect all the slopes with the fewest number of helicopter flights.
给张有向无环图,问至少多少条路径能够覆盖所有的边(可以重复

输入

The first line of the input file contains a single integer number n (2 <= n <= 100) - the number of points in the ski resort. The following n lines of the input file describe each point of the ski resort numbered from 1 to n. Each line starts with a single integer number mi (0 <= mi < n for i from 1 to n) and is followed by mi integer numbers aij separated by spaces. All aij are distinct for each i and each aij (1 <= aij <= n, aij  i) represents a slope going downwards from point i to point aij . Each point in the resort has at least one slope connected to it.

输出

On the first line of the output file write a single integer number k - the minimal number of helicopter flights that are needed to inspect all slopes. Then write k lines that describe inspection routes for each helicopter flight. Each route shall start with single integer number from 1 to n - the number of the drop off point for the helicopter flight, followed by the numbers of points that will be visited during inspection in the corresponding order as the slopes are inspected going downwards. Numbers on a line shall be separated by spaces. You can write routes in any order.

样例输入

8
1 3
1 7
2 4 5
1 8
1 8
0
2 6 5
0

样例输出

4


题解

有上下界最小流

题目要求可以从任意点出发到任意点停止,每条边至少经过一次。这显然是最小流问题。

连边S->每个点、每个点->T、T->S、原图中的边,容量为inf;对于每个点x如果入度大于0则连SS->x,容量为ind[x],否则连x->TT,容量为-ind[x]。

跑SS->TT最大流,然后把T->S、SS->x、x->TT边删除,跑T->S最大流,两次答案相减即为答案。

#include <cstdio>
#include <cstring>
#include <queue>
#define N 110
#define M 20010
using namespace std;
const int inf = 1 << 30;
queue<int> q;
int head[N] , to[M] , val[M] , next[M] , cnt = 1 , s , t , dis[N] , ind[N];
void add(int x , int y , int z)
{
to[++cnt] = y , val[cnt] = z , next[cnt] = head[x] , head[x] = cnt;
to[++cnt] = x , val[cnt] = 0 , next[cnt] = head[y] , head[y] = cnt;
}
bool bfs()
{
int x , i;
memset(dis , 0 , sizeof(dis));
while(!q.empty()) q.pop();
dis[s] = 1 , q.push(s);
while(!q.empty())
{
x = q.front() , q.pop();
for(i = head[x] ; i ; i = next[i])
{
if(val[i] && !dis[to[i]])
{
dis[to[i]] = dis[x] + 1;
if(to[i] == t) return 1;
q.push(to[i]);
}
}
}
return 0;
}
int dinic(int x , int low)
{
if(x == t) return low;
int temp = low , i , k;
for(i = head[x] ; i ; i = next[i])
{
if(val[i] && dis[to[i]] == dis[x] + 1)
{
k = dinic(to[i] , min(temp , val[i]));
if(!k) dis[to[i]] = 0;
val[i] -= k , val[i ^ 1] += k;
if(!(temp -= k)) break;
}
}
return low - temp;
}
int main()
{
int n , i , b , e , x , y , ans = 0;
scanf("%d" , &n) , b = 0 , e = n + 1 , s = n + 2 , t = n + 3;
add(e , b , inf);
for(i = 1 ; i <= n ; i ++ )
{
scanf("%d" , &y);
while(y -- ) scanf("%d" , &x) , add(i , x , inf) , ind[i] -- , ind[x] ++ ;
}
for(i = 1 ; i <= n ; i ++ )
{
add(b , i , inf) , add(i , e , inf);
if(ind[i] > 0) add(s , i , ind[i]);
else add(i , t , -ind[i]);
}
while(bfs()) dinic(s , inf);
ans = val[3] , val[2] = val[3] = 0;
for(i = head[s] ; i ; i = next[i]) val[i] = val[i ^ 1] = 0;
for(i = head[t] ; i ; i = next[i]) val[i] = val[i ^ 1] = 0;
s = e , t = b;
while(bfs()) ans -= dinic(s , inf);
printf("%d\n" , ans);
return 0;
}

【bzoj2625】[Neerc2009]Inspection 有上下界最小流的更多相关文章

  1. sgu 176 Flow construction(有源汇的上下界最小流)

    [题目链接] http://acm.hust.edu.cn/vjudge/problem/viewProblem.action?id=11025 [模型] 有源汇点的上下界最小流.即既满足上下界又满足 ...

  2. BZOJ_2502_清理雪道_有源汇上下界最小流

    BZOJ_2502_清理雪道_有源汇上下界最小流 Description        滑雪场坐落在FJ省西北部的若干座山上. 从空中鸟瞰,滑雪场可以看作一个有向无环图,每条弧代表一个斜坡(即雪道), ...

  3. 【Loj117】有源汇上下界最小流(网络流)

    [Loj117]有源汇上下界最小流(网络流) 题面 Loj 题解 还是模板题. #include<iostream> #include<cstdio> #include< ...

  4. SGU 176 Flow construction (有源有汇有上下界最小流)

    题意:给定 n 个点,m 条有向边,如果有向边的标号是1的话,就表示该边的上界下界都为容量 ,如果有向边的标号为0的哈,表示该边的下界为0,上界为容量 ,现在问,从 1 到 n 的最小流是多少,并输出 ...

  5. loj #117. 有源汇有上下界最小流

    题目链接 有源汇有上下界最小流,->上下界网络流 注意细节,边数组也要算上后加到SS,TT边. #include<cstdio> #include<algorithm> ...

  6. LOJ.117.[模板]有源汇有上下界最小流(Dinic)

    题目链接 有源汇有上下界最小流 Sol1. 首先和无源汇网络流一样建图,求SS->TT最大流: 然后连边(T->S,[0,INF]),再求一遍SS->TT最大流,答案为新添加边的流量 ...

  7. BZOJ1458:士兵占领(有上下界最小流)

    Description 有一个M * N的棋盘,有的格子是障碍.现在你要选择一些格子来放置一些士兵,一个格子里最多可以放置一个士兵,障碍格里不能放置士兵.我们称这些士兵占领了整个棋盘当满足第i行至少放 ...

  8. HDU 3157 Crazy Circuits (有源汇上下界最小流)

    题意:一个电路板,上面有N个接线柱(标号1~N)   还有两个电源接线柱  +  - 然后是 给出M个部件正负极的接线柱和最小电流,求一个可以让所有部件正常工作的总电流. 析:这是一个有源汇有上下界的 ...

  9. hdu3157有源汇上下界最小流

    题意:有源汇上下界最小流裸题,主要就是输入要用字符串的问题 #include<bits/stdc++.h> #define fi first #define se second #defi ...

随机推荐

  1. 【Python图像特征的音乐序列生成】如何生成旋律(大纲),以及整个项目的全部流程

    今天连看三篇论文,不是很细致地看,也没有具体去实现,只是大概明白了一些新思路.这三篇论文,一篇概述了Decoder-Encoder模型,一篇延伸这个模型,首次提出了Attention机制,最后一篇详细 ...

  2. UIView Border color

    // // UIView+Borders.h // // Created by Aaron Ng on 12/28/13. // Copyright (c) 2013 Delve. All right ...

  3. java Vamei快速教程00

    作者:Vamei 出处:http://www.cnblogs.com/vamei 欢迎转载,也请保留这段声明.谢谢! Java是面向对象语言.这门语言其实相当年轻,于1995年才出现,由Sun公司出品 ...

  4. MovieReview—Coco(寻梦环游记)

    Dream & Family         The protagonist in the movie is hard to choose between family and dream. ...

  5. [torch] torch.contiguous

    torch.contiguous 作用 连续存储,因为view的操作要求的是连续的内容. 详细 考虑下面的操作,transpose操作只是改变了stride,而实际数组存储的内容并没有得到任何改变,即 ...

  6. CRF条件随机场简介<转>

    转自http://hi.baidu.com/hehehehello/item/3b0d1f8ba1c2e5c698255f89 CRF(Conditional Random Field) 条件随机场是 ...

  7. Python列表解析与生成器表达式

    Python列表解析 l = ["egg%s" %i for i in range(100) if i > 50] print(l) l= [1,2,3,4] s = 'he ...

  8. 安装 Win7 的系统的时候如何分区

    解决方案 在安装Win7的系统的时候,可以使用下面方法进行分区: 1. 在出现同意许可条款,勾选“我接受许可条款(A)”后,点击下一步,然后继续下面操作: 2. 进入分区界面,点击“驱动器选项(高级) ...

  9. cocos2dx for iOS fmod的音效引擎接入

    上一个博客我写了一篇fmod的android接入过程,这一次介绍一下ios接入fmod的方法. 首先下载fmod的api包,解压后,在FMOD Programmers API/api文件夹下有lowl ...

  10. DC课程目标