题目描述

You are in charge of a team that inspects a new ski resort. A ski resort is situated on several mountains and consists of a number of slopes. Slopes are connected with each other, forking and joining. A map of the ski resort is represented as an acyclic directed graph. Nodes of the graph represent different points in ski resort and edges of the graph represent slopes between the points, with the direction of edges going downwards. 
Your team has to inspect each slope of the ski resort. Ski lifts on this resort are not open yet, but you have a helicopter. In one fiight the helicopter can drop one person into any point of the resort. From the drop off point the person can ski down the slopes, inspecting each slope as they ski. It is fine to inspect the same slope multiple times, but you have to minimize the usage of the helicopter. So, you have to figure out how to inspect all the slopes with the fewest number of helicopter flights.
给张有向无环图,问至少多少条路径能够覆盖所有的边(可以重复

输入

The first line of the input file contains a single integer number n (2 <= n <= 100) - the number of points in the ski resort. The following n lines of the input file describe each point of the ski resort numbered from 1 to n. Each line starts with a single integer number mi (0 <= mi < n for i from 1 to n) and is followed by mi integer numbers aij separated by spaces. All aij are distinct for each i and each aij (1 <= aij <= n, aij  i) represents a slope going downwards from point i to point aij . Each point in the resort has at least one slope connected to it.

输出

On the first line of the output file write a single integer number k - the minimal number of helicopter flights that are needed to inspect all slopes. Then write k lines that describe inspection routes for each helicopter flight. Each route shall start with single integer number from 1 to n - the number of the drop off point for the helicopter flight, followed by the numbers of points that will be visited during inspection in the corresponding order as the slopes are inspected going downwards. Numbers on a line shall be separated by spaces. You can write routes in any order.

样例输入

8
1 3
1 7
2 4 5
1 8
1 8
0
2 6 5
0

样例输出

4


题解

有上下界最小流

题目要求可以从任意点出发到任意点停止,每条边至少经过一次。这显然是最小流问题。

连边S->每个点、每个点->T、T->S、原图中的边,容量为inf;对于每个点x如果入度大于0则连SS->x,容量为ind[x],否则连x->TT,容量为-ind[x]。

跑SS->TT最大流,然后把T->S、SS->x、x->TT边删除,跑T->S最大流,两次答案相减即为答案。

#include <cstdio>
#include <cstring>
#include <queue>
#define N 110
#define M 20010
using namespace std;
const int inf = 1 << 30;
queue<int> q;
int head[N] , to[M] , val[M] , next[M] , cnt = 1 , s , t , dis[N] , ind[N];
void add(int x , int y , int z)
{
to[++cnt] = y , val[cnt] = z , next[cnt] = head[x] , head[x] = cnt;
to[++cnt] = x , val[cnt] = 0 , next[cnt] = head[y] , head[y] = cnt;
}
bool bfs()
{
int x , i;
memset(dis , 0 , sizeof(dis));
while(!q.empty()) q.pop();
dis[s] = 1 , q.push(s);
while(!q.empty())
{
x = q.front() , q.pop();
for(i = head[x] ; i ; i = next[i])
{
if(val[i] && !dis[to[i]])
{
dis[to[i]] = dis[x] + 1;
if(to[i] == t) return 1;
q.push(to[i]);
}
}
}
return 0;
}
int dinic(int x , int low)
{
if(x == t) return low;
int temp = low , i , k;
for(i = head[x] ; i ; i = next[i])
{
if(val[i] && dis[to[i]] == dis[x] + 1)
{
k = dinic(to[i] , min(temp , val[i]));
if(!k) dis[to[i]] = 0;
val[i] -= k , val[i ^ 1] += k;
if(!(temp -= k)) break;
}
}
return low - temp;
}
int main()
{
int n , i , b , e , x , y , ans = 0;
scanf("%d" , &n) , b = 0 , e = n + 1 , s = n + 2 , t = n + 3;
add(e , b , inf);
for(i = 1 ; i <= n ; i ++ )
{
scanf("%d" , &y);
while(y -- ) scanf("%d" , &x) , add(i , x , inf) , ind[i] -- , ind[x] ++ ;
}
for(i = 1 ; i <= n ; i ++ )
{
add(b , i , inf) , add(i , e , inf);
if(ind[i] > 0) add(s , i , ind[i]);
else add(i , t , -ind[i]);
}
while(bfs()) dinic(s , inf);
ans = val[3] , val[2] = val[3] = 0;
for(i = head[s] ; i ; i = next[i]) val[i] = val[i ^ 1] = 0;
for(i = head[t] ; i ; i = next[i]) val[i] = val[i ^ 1] = 0;
s = e , t = b;
while(bfs()) ans -= dinic(s , inf);
printf("%d\n" , ans);
return 0;
}

【bzoj2625】[Neerc2009]Inspection 有上下界最小流的更多相关文章

  1. sgu 176 Flow construction(有源汇的上下界最小流)

    [题目链接] http://acm.hust.edu.cn/vjudge/problem/viewProblem.action?id=11025 [模型] 有源汇点的上下界最小流.即既满足上下界又满足 ...

  2. BZOJ_2502_清理雪道_有源汇上下界最小流

    BZOJ_2502_清理雪道_有源汇上下界最小流 Description        滑雪场坐落在FJ省西北部的若干座山上. 从空中鸟瞰,滑雪场可以看作一个有向无环图,每条弧代表一个斜坡(即雪道), ...

  3. 【Loj117】有源汇上下界最小流(网络流)

    [Loj117]有源汇上下界最小流(网络流) 题面 Loj 题解 还是模板题. #include<iostream> #include<cstdio> #include< ...

  4. SGU 176 Flow construction (有源有汇有上下界最小流)

    题意:给定 n 个点,m 条有向边,如果有向边的标号是1的话,就表示该边的上界下界都为容量 ,如果有向边的标号为0的哈,表示该边的下界为0,上界为容量 ,现在问,从 1 到 n 的最小流是多少,并输出 ...

  5. loj #117. 有源汇有上下界最小流

    题目链接 有源汇有上下界最小流,->上下界网络流 注意细节,边数组也要算上后加到SS,TT边. #include<cstdio> #include<algorithm> ...

  6. LOJ.117.[模板]有源汇有上下界最小流(Dinic)

    题目链接 有源汇有上下界最小流 Sol1. 首先和无源汇网络流一样建图,求SS->TT最大流: 然后连边(T->S,[0,INF]),再求一遍SS->TT最大流,答案为新添加边的流量 ...

  7. BZOJ1458:士兵占领(有上下界最小流)

    Description 有一个M * N的棋盘,有的格子是障碍.现在你要选择一些格子来放置一些士兵,一个格子里最多可以放置一个士兵,障碍格里不能放置士兵.我们称这些士兵占领了整个棋盘当满足第i行至少放 ...

  8. HDU 3157 Crazy Circuits (有源汇上下界最小流)

    题意:一个电路板,上面有N个接线柱(标号1~N)   还有两个电源接线柱  +  - 然后是 给出M个部件正负极的接线柱和最小电流,求一个可以让所有部件正常工作的总电流. 析:这是一个有源汇有上下界的 ...

  9. hdu3157有源汇上下界最小流

    题意:有源汇上下界最小流裸题,主要就是输入要用字符串的问题 #include<bits/stdc++.h> #define fi first #define se second #defi ...

随机推荐

  1. 【Python图像特征的音乐序列生成】关于数据库到底在哪里下载

    毕竟原网站一个是14年前的一个是16年前的…… 1,http://ifdo.ca/~seymour/nottingham/nottingham.html 这个网站可以下载zip包. 2,https:/ ...

  2. 使用MaskedTextBox控件实现输入验证

    实现效果: 知识运用: MaskedTextBox控件的 Mask属性 BeepOnError属性 MaskInputRejected事件 实现代码: private void Form1_Load( ...

  3. 2018.4.11 Java为何用xml做配置文件? 理由如下

    在Java世界里xml配置文件几乎是首选,xml有什么好的特性呢? 第一:xml能存储小量数据,仅仅是存储数据. 第二:xml可以跨平台,主流各种平台都对xml有支持, 真正的跨平台, 第三:xml读 ...

  4. python_87_shelve模块

    'shelve模块是一个简单的key,value将内存数据通过文件持久化的模块,可以持久化任何pickle可支持的python数据格式(只支持pickle)' #序列化,将数据写入文件 import ...

  5. Java基础面试操作题:线程同步代码块 两个客户往一个银行存钱,每人存三十次一次存一百。 模拟银行存钱功能,时时银行现金数。

    package com.swift; public class Bank_Customer_Test { public static void main(String[] args) { /* * 两 ...

  6. NOIP模拟赛 无线通讯网

    [题目描述] 国防部计划用无线网络连接若干个边防哨所.2种不同的通讯技术用来搭建无线网络:每个边防哨所都要配备无线电收发器:有一些哨所还可以增配卫星电话. 任意两个配备了一条卫星电话线路的哨所(两边都 ...

  7. k8s 基于NFS部署storageclass pv自动供给

    在k8s中部署有状态应用时,通常需要做数据持久化存储. 后端存储的方式有以下几种: 1.基于宿主机本地的存储方式: (重启pod时,若pod被调度到其他节点上,尽管原来节点上的数据不会丢失,但是其他节 ...

  8. nginx基本安全优化

    一.调整参数隐藏nginx软件版本号信息 查看nginx版本信息: [root@nginx conf]# curl -I 192.168.200.102 HTTP/1.1 200 OK Server: ...

  9. 如何用纯 CSS 创作一台拍立得照相机

    效果预览 按下右侧的"点击预览"按钮可以在当前页面预览,点击链接可以全屏预览. https://codepen.io/comehope/pen/YjYgey 可交互视频 此视频是可 ...

  10. 《linux设备驱动开发详解》笔记——7并发控制

    linux中并发无处不在,底层驱动需要考虑. 7.1 并发与竞争 7.1.1 概念 并发:Concurrency,多个执行单元同时.并行执行 竞争:Race Condistions,并发的执行单元对共 ...