题目描述

不久之前,Mirko建立了一个旅行社,名叫“极地之梦”。这家旅行社在北极附近购买了N座冰岛,并且提供观光服务。当地最受欢迎的当然是帝企鹅了,这些小家伙经常成群结队的游走在各个冰岛之间。Mirko的旅行社遭受一次重大打击,以至于观光游轮已经不划算了。旅行社将在冰岛之间建造大桥,并用观光巴士来运载游客。Mirko希望开发一个电脑程序来管理这些大桥的建造过程,以免有不可预料的错误发生。这些冰岛从1到N标号。一开始时这些岛屿没有大桥连接,并且所有岛上的帝企鹅数量都是知道的。每座岛上的企鹅数量虽然会有所改变,但是始终在[0, 1000]之间。你的程序需要处理以下三种命令:
1."bridge A B"——在A与B之间建立一座大桥(A与B是不同的岛屿)。由于经费限制,这项命令被接受,当且仅当A与B不联通。若这项命令被接受,你的程序需要输出"yes",之后会建造这座大桥。否则,你的程序需要输出"no"。
2."penguins A X"——根据可靠消息,岛屿A此时的帝企鹅数量变为X。这项命令只是用来提供信息的,你的程序不需要回应。
3."excursion A B"——一个旅行团希望从A出发到B。若A与B连通,你的程序需要输出这个旅行团一路上所能看到的帝企鹅数量(包括起点A与终点B),若不联通,你的程序需要输出"impossible"。

输入

第一行一个正整数N,表示冰岛的数量。
第二行N个范围[0, 1000]的整数,为每座岛屿初始的帝企鹅数量。
第三行一个正整数M,表示命令的数量。接下来M行即命令,为题目描述所示。
1<=N<=30000,1<=M<=100000

输出

对于每个bridge命令与excursion命令,输出一行,为题目描述所示。

样例输入

5
4 2 4 5 6
10
excursion 1 1
excursion 1 2
bridge 1 2
excursion 1 2
bridge 3 4
bridge 3 5
excursion 4 5
bridge 1 3
excursion 2 4
excursion 2 5

样例输出

4


题解

明知道可以并查集+树剖却偏要使用LCT,为啥?因为好写啊~

在LCT的Splay Tree上维护一个sum,表示实子树的点权和。

然后模拟操作就行了,修改时直接Splay后修改就行。

#include <cstdio>
#include <cstring>
#include <algorithm>
#define N 30010
using namespace std;
int fa[N] , c[2][N] , w[N] , sum[N] , rev[N];
char str[15];
void pushup(int x)
{
sum[x] = sum[c[0][x]] + sum[c[1][x]] + w[x];
}
void pushdown(int x)
{
if(rev[x])
{
int l = c[0][x] , r = c[1][x];
swap(c[0][l] , c[1][l]) , swap(c[0][r] , c[1][r]);
rev[l] ^= 1 , rev[r] ^= 1 , rev[x] = 0;
}
}
bool isroot(int x)
{
return c[0][fa[x]] != x && c[1][fa[x]] != x;
}
void update(int x)
{
if(!isroot(x)) update(fa[x]);
pushdown(x);
}
void rotate(int x)
{
int y = fa[x] , z = fa[y] , l = (c[1][y] == x) , r = l ^ 1;
if(!isroot(y)) c[c[1][z] == y][z] = x;
fa[x] = z , fa[y] = x , fa[c[r][x]] = y , c[l][y] = c[r][x] , c[r][x] = y;
pushup(y) , pushup(x);
}
void splay(int x)
{
update(x);
while(!isroot(x))
{
int y = fa[x] , z = fa[y];
if(!isroot(y)) rotate((c[0][y] == x) ^ (c[0][z] == y) ? x : y);
rotate(x);
}
}
void access(int x)
{
int t = 0;
while(x) splay(x) , c[1][x] = t , pushup(x) , t = x , x = fa[x];
}
int find(int x)
{
access(x) , splay(x);
while(c[0][x]) pushdown(x) , x = c[0][x];
return x;
}
void makeroot(int x)
{
access(x) , splay(x) , swap(c[0][x] , c[1][x]) , rev[x] ^= 1;
}
void link(int x , int y)
{
makeroot(x) , fa[x] = y;
}
int main()
{
int n , i , m , x , y;
scanf("%d" , &n);
for(i = 1 ; i <= n ; i ++ ) scanf("%d" , &w[i]) , sum[i] = w[i];
scanf("%d" , &m);
while(m -- )
{
scanf("%s%d%d" , str , &x , &y);
if(str[0] == 'b')
{
if(find(x) == find(y)) puts("no");
else puts("yes") , link(x , y);
}
else if(str[0] == 'p') splay(x) , w[x] = y , pushup(x);
else
{
if(find(x) != find(y)) puts("impossible");
else makeroot(x) , access(y) , splay(y) , printf("%d\n" , sum[y]);
}
}
return 0;
}

【bzoj2843】极地旅行社 LCT的更多相关文章

  1. BZOJ2843 极地旅行社 LCT

    欢迎访问~原文出处——博客园-zhouzhendong 去博客园看该题解 题目传送门 - BZOJ2843 题意概括 有n座岛 每座岛上的企鹅数量虽然会有所改变,但是始终在[0, 1000]之间.你的 ...

  2. bzoj2843极地旅行社

    bzoj2843极地旅行社 题意: 一些点,每个点有一个权值.有三种操作:点与点连边,单点修改权值,求两点之间路径上点的权值和(需要判输入是否合法) 题解: 以前一直想不通为什么神犇们的模板中LCT在 ...

  3. [bzoj2843&&bzoj1180]极地旅行社 (lct)

    双倍经验双倍的幸福... 所以另一道是300大洋的世界T_T...虽然题目是一样的,不过2843数据范围小了一点... 都是lct基本操作 #include<cstdio> #includ ...

  4. BZOJ2843: 极地旅行社

    2843: 极地旅行社 Time Limit: 10 Sec  Memory Limit: 256 MBSubmit: 90  Solved: 56[Submit][Status] Descripti ...

  5. BZOJ 2843: 极地旅行社( LCT )

    LCT.. ------------------------------------------------------------------------ #include<cstdio> ...

  6. BZOJ2843极地旅行社&BZOJ1180[CROATIAN2009]OTOCI——LCT

    题目描述 给出n个结点以及每个点初始时对应的权值wi.起始时点与点之间没有连边.有3类操作:  1.bridge A B:询问结点A与结点B是否连通. 如果是则输出“no”.否则输出“yes”,并且在 ...

  7. [BZOJ2843] 极地旅行社(LCT)

    传送门 模板. ——代码 #include <cstdio> #include <iostream> #define N 300001 #define get(x) (son[ ...

  8. 【BZOJ1180】: [CROATIAN2009]OTOCI & 2843: 极地旅行社 LCT

    竟然卡了我....忘记在push_down先下传父亲的信息了....还有splay里for():卡了我10min,但是双倍经验还是挺爽的,什么都不用改. 感觉做的全是模板题,太水啦,不能这么水了... ...

  9. BZOJ2843——极地旅行社

    1.题目大意:动态树问题,点修改,链查询.另外说明双倍经验题=bzoj1180 2.分析:lct模板题,练手的 #include <stack> #include <cstdio&g ...

随机推荐

  1. [dp][uestc oj]J - 男神的约会

    J - 男神的约会 Time Limit: 3000/1000MS (Java/Others)     Memory Limit: 65535/65535KB (Java/Others) Submit ...

  2. 《队长说得队》【Alpha】Scrum meeting 1

    项目 内容 这个作业属于哪个课程 >>2016级计算机科学与工程学院软件工程(西北师范大学) 这个作业的要求在哪里 >>实验十二 团队作业8:软件测试与ALPHA冲刺 团队名称 ...

  3. [LUOGU]P1508 Likecloud-吃、吃、吃

    题目背景 问世间,青春期为何物? 答曰:"甲亢,甲亢,再甲亢:挨饿,挨饿,再挨饿!" 题目描述 正处在某一特定时期之中的李大水牛由于消化系统比较发达,最近一直处在饥饿的状态中.某日 ...

  4. pandas归一化操作

    归一化操作有两种 1.max和min的归一化操作 min-max标准化(Min-Max Normalization) 返回结果0~1 公式: 实例: 如: 随机生成假数据如下 df = DataFra ...

  5. 【Git版本控制】Git的merge合并分支命令

    1.实例 git checkout master git merge dev merge合并分支只对当前分支master产生影响,被合并的分支dev不受影响. 假设你有两个分支,“stable” 和 ...

  6. Fedora 28 系统基础配置以及常用软件安装方式

    实验说明: 很多人说Linux很难用,很难上手,其实不然,倘若不玩游戏,其实很多发行版Linux都可以成为主力系统,就比如本章要讲的 Fedora 28.本章会从镜像来源.系统安装.基础配置和常用软件 ...

  7. Python——format汇总

    一.str.format 按照指定格式格式化字符串,然后返回格式化的字符串,源字符串不变. 以下是Python2.7环境. 1.1.按照位置替换 参考下面例子: >>> s = '{ ...

  8. gulp的安装和使用

    安装nodejs -> 全局安装gulp -> 项目安装gulp以及gulp插件 -> 配置gulpfile.js -> 运行任务 1.去nodejs官网安装nodejs 2. ...

  9. Python使用gevent实现协程

    Python中多任务的实现可以使用进程和线程,也可以使用协程. 一.协程介绍 协程,又称微线程.英文名Coroutine.协程是Python语言中所特有的,在其他语言中没有. 协程是python中另外 ...

  10. Monkeyrunner脚本的录制与回放

    继上一篇monkeyrunner环境搭建:http://www.cnblogs.com/zh-ya-jing/p/4351245.html 之后,我们可以进一步学习monkeyrunner了. 我也是 ...