bzoj 3771: Triple 快速傅里叶变换 FFT
题目大意:
给出\(n\)个互不相同的物品,每个物品有价值\(x_i(x_i \leq 40000)\)如果可以从中取一个或两个或三个物品。问能够组合出来的所有价值和对应的方案数,全部输出.取值时,\((a,b)\)和\((b,a)\)算作一种
题解:
不要说什没有给\(n\)的范围什么的,题目表明了\(n \leq 40000\)
我们首先想到的是直接取
我们构造出只取一个物品时的母函数
\]
然后我们取两个物品的时候的母函数就可以用乘积来表示
即\(A(x)*A(x)\)
但是我们发现这样取到了不合法的情况,每个物品只能取一遍,但是直接计算的话会出现同一个物品取了两次的情况
所以我们应该减去这个不合法的情况(即容斥原理)
什么是不合法情况呢?就是同一个物品被取到了两次.
所以我们构造出取同一个物品取了两次的母函数,即
\]
所以我们取两个的方案数就是\(A(x)^2 - B(x)\)
相应的我们构造出同一个物品取了三次的母函数,即
\]
所以我们考虑在取三个的时候我们取到的有\(AAB, ABA, BAA, AAA\)
所以由容斥原理,取三个的时候的方案即为\(A(x)^3 - 3A(x)B(x) + 2C(x)\)
但是我们都没有考虑顺序的问题,我们考虑顺去,除去所有元素的全排列
那么我们最终的答案就是
\]
使用FFT计算即可
#include <cmath>
#include <cstdio>
#include <cstring>
#include <algorithm>
using namespace std;
typedef long long ll;
inline void read(int &x){
x=0;char ch;bool flag = false;
while(ch=getchar(),ch<'!');if(ch == '-') ch=getchar(),flag = true;
while(x=10*x+ch-'0',ch=getchar(),ch>'!');if(flag) x=-x;
}
inline int cat_max(const int &a,const int &b){return a>b ? a:b;}
inline int cat_min(const int &a,const int &b){return a<b ? a:b;}
const int maxn = 208000;
const double pi = acos(-1);
struct complex{
double x,y;
complex(){}
complex(double a,double b){x=a;y=b;}
complex operator + (const complex &r){return complex(x+r.x,y+r.y);}
complex operator - (const complex &r){return complex(x-r.x,y-r.y);}
complex operator * (const complex &r){return complex(x*r.x-y*r.y,x*r.y+y*r.x);}
complex operator / (const double &r){return complex(x/r,y/r);}
};
void FFT(complex *x,int n,int p){
for(int i=0,t=0;i<n;++i){
if(i > t) swap(x[i],x[t]);
for(int j=n>>1;(t^=j) < j;j>>=1);
}
for(int m=2;m<=n;m<<=1){
complex wn(cos(p*2*pi/m),sin(p*2*pi/m));
for(int i=0;i<n;i+=m){
complex w(1,0),u;
int k = m>>1;
for(int j=0;j<k;++j,w=w*wn){
u = x[i+j+k]*w;
x[i+j+k] = x[i+j] - u;
x[i+j] = x[i+j] + u;
}
}
}
if(p == -1) for(int i=0;i<n;++i) x[i] = x[i]/n;
}
complex a[maxn],b[maxn],c[maxn],d[maxn];
int main(){
int n;read(n);
int nn = 0;
for(int i=0,x;i<n;++i){
read(x);
a[x].x += 1.0;
b[x<<1].x += 1.0;
c[x*3].x += 1.0;
nn = cat_max(nn,x*3);
}
int len = 1;
for(int i=1;(i>>1)<nn;i<<=1) len = i;
FFT(a,len,1);FFT(b,len,1);
for(int i=0;i<len;++i) d[i] = a[i]*a[i]*a[i]/6.0 + (a[i]*a[i] - a[i]*b[i] - b[i])/2.0 + a[i];
FFT(d,len,-1);
for(int i=0;i<len;++i) d[i] = d[i] + c[i]/3.0;
for(int i=0;i<len;++i){
int x = (int)(d[i].x + 0.5);
if(x == 0) continue;
printf("%d %d\n",i,x);
}
getchar();getchar();
return 0;
}
bzoj 3771: Triple 快速傅里叶变换 FFT的更多相关文章
- BZOJ 3771: Triple [快速傅里叶变换 生成函数 容斥原理]
题意:n个物品,可以用1/2/3个不同的物品组成不同的价值,求每种价值有多少种方案(顺序不同算一种) [生成函数]: 构造这么一个多项式函数g(x),使得n次项系数为a[n]. 普通型生成函数用于解决 ...
- bzoj 3771: Triple【生成函数+FFT+容斥原理】
瞎搞居然1A,真是吃鲸 n的范围只有聪明人能看见--建议读题3遍 首先看计数就想到生成函数,列出多项式A(x),然后分别考虑123 对于选一个的直接计数即可: 对于选两个的,\( A(x)^2 \), ...
- [BZOJ 3771] Triple(FFT+容斥原理+生成函数)
[BZOJ 3771] Triple(FFT+生成函数) 题面 给出 n个物品,价值为别为\(w_i\)且各不相同,现在可以取1个.2个或3个,问每种价值和有几种情况? 分析 这种计数问题容易想到生成 ...
- 再探快速傅里叶变换(FFT)学习笔记(其三)(循环卷积的Bluestein算法+分治FFT+FFT的优化+任意模数NTT)
再探快速傅里叶变换(FFT)学习笔记(其三)(循环卷积的Bluestein算法+分治FFT+FFT的优化+任意模数NTT) 目录 再探快速傅里叶变换(FFT)学习笔记(其三)(循环卷积的Blueste ...
- 快速傅里叶变换(FFT)学习笔记(其一)
再探快速傅里叶变换(FFT)学习笔记(其一) 目录 再探快速傅里叶变换(FFT)学习笔记(其一) 写在前面 为什么写这篇博客 一些约定 前置知识 多项式卷积 多项式的系数表达式和点值表达式 单位根及其 ...
- 快速傅里叶变换FFT
多项式乘法 #include <cstdio> #include <cmath> #include <algorithm> #include <cstdlib ...
- [学习笔记] 多项式与快速傅里叶变换(FFT)基础
引入 可能有不少OIer都知道FFT这个神奇的算法, 通过一系列玄学的变化就可以在 $O(nlog(n))$ 的总时间复杂度内计算出两个向量的卷积, 而代码量却非常小. 博主一年半前曾经因COGS的一 ...
- 快速傅里叶变换FFT& 数论变换NTT
相关知识 时间域上的函数f(t)经过傅里叶变换(Fourier Transform)变成频率域上的F(w),也就是用一些不同频率正弦曲线的加 权叠加得到时间域上的信号. \[ F(\omega)=\m ...
- 多项式 之 快速傅里叶变换(FFT)/数论变换(NTT)/常用套路【入门】
原文链接https://www.cnblogs.com/zhouzhendong/p/Fast-Fourier-Transform.html 多项式 之 快速傅里叶变换(FFT)/数论变换(NTT)/ ...
随机推荐
- 查看mysql 的存储过程定义
查询数据库中的存储过程 方法一: select `name` from mysql.proc where db = 'your_db_name' and `type` = 'PROCEDURE' 方法 ...
- 新手学习JSP+Servlet笔记一
作为一个新手,初次接触jsp,servlet,习惯了后台的开发,前台的知识一窍不通,利用闲暇时间,给自己补补,从MyEclipse开始. 安装好MyEclipse之后,没有安装程序的可以下载 http ...
- POJ 1787 Charlie's Change
多重背包 可行性+路径记录 题意是说你要用很多其它的零钱去买咖啡.最后输出你分别要用的 1,5 ,10 .25 的钱的数量. 多重背包二进制分解.然后记录下 这个状态.最后逆向推就可以. #inclu ...
- 规范-Git打标签与版本控制
Git打标签与版本控制规范 前言 本文适用于使用Git做VCS(版本控制系统)的场景. 用过Git的程序猿,都喜欢其分布式架构带来的commit快感.不用像使用SVN这种集中式版本管理系统,每一次提交 ...
- centOS7 安装nginx+php+mysql
nginx安装 本文是介绍使用源码编译安装,包括具体的编译参数信息. 正式开始前,编译环境gcc g++ 开发库之类的需要提前装好. 安装make: yum -y install gcc automa ...
- Project Euler:Problem 41 Pandigital prime
We shall say that an n-digit number is pandigital if it makes use of all the digits 1 to n exactly o ...
- tomcat+java 占cpu 调试【top命令应用】
原文出处:http://www.blogjava.net/hankchen 现象: 在tomcat中部署java的web应用程序,过一段时间后出现tomcat的java进程持续占用cpu高达100%, ...
- net上传文件的三种方法
ASP.NET依托.net framework类库,封装了大量的功能,使得上传文件非常简单,主要有以下三种基本方法. 方法一:用Web控件FileUpload,上传到网站根目录. Test.aspx关 ...
- regularexpression_action
re.compile('"ssid":"[^"]*"}',re.MULTILINE) regex ,str_= re.compile('"s ...
- 关于调用notifyDataSetChanged刷新PullToRefreshListView列表无反应解决办法
文章转载自:关于调用notifyDataSetChanged刷新PullToRefreshListView列表无反应解决办法 | TeachCourse