bryce1010模板

http://poj.org/problem?id=1470

/*伪代码
Tarjan(u)//marge和find为并查集合并函数和查找函数
{
for each(u,v) //访问所有u子节点v
{
Tarjan(v); //继续往下遍历
marge(u,v); //合并v到u上
标记v被访问过;
}
for each(u,e) //访问所有和u有询问关系的e
{
如果e被访问过;
u,e的最近公共祖先为find(e);
}
} */
//思想
/*
1.任选一个点为根节点,从根节点开始。
2.遍历该点u所有子节点v,并标记这些子节点v已被访问过。
3.若是v还有子节点,返回2,否则下一步。
4.合并v到u上。
5.寻找与当前点u有询问关系的点v。
6.若是v已经被访问过了,则可以确认u和v的最近公共祖先为v被合并到的父亲节点a。
*/ #include<iostream>
#include<algorithm>
#include<string.h>
#include<stdio.h>
#include<math.h>
using namespace std;
#define ll long long const int MAXN=1010;
const int MAXQ=500010; //并查集部分
int F[MAXN];//初始化为-1
int find(int x)
{
if(F[x]==-1)return x;
return F[x]=find(F[x]);
}
//merge
void bing(int u,int v)
{
int t1=find(u);
int t2=find(v);
if(t1!=t2)
{
F[t1]=t2;
}
}
//****************
//建图部分
bool vis[MAXN];
int ancestor[MAXN];//存储查询过程节点的祖先
struct Edge
{
int to,next;
}edge[MAXN<<2];
int head[MAXN],tot;
void add_edge(int u,int v)
{
edge[tot].to=v;
edge[tot].next=head[u];
head[u]=tot++;
} //离线查询部分 struct Query
{
int q,next;
int index;// 查询编号
}query[MAXQ<<1]; int answer[MAXQ];//存储最后的每个查询的公共祖先,下标0,Q-1
int h[MAXQ];
int tt;int Q; void add_query(int u,int v,int index)
{
query[tt].q=v;
query[tt].next=h[u];
query[tt].index=index;
h[u]=tt++;
query[tt].q=u;
query[tt].next=h[v];
query[tt].index=index;
h[v]=tt++;
} //LCA部分
void init()
{
tot=0;
memset(head,-1,sizeof(head));
tt=0;
memset(h,-1,sizeof(h));
memset(vis,false,sizeof(vis));
memset(F,-1,sizeof(F));
memset(ancestor,0,sizeof(ancestor));
} void LCA(int u)
{
ancestor[u]=u;
vis[u]=true;
for(int i=head[u];i!=-1;i=edge[i].next)
{
int v=edge[i].to;
if(vis[v])continue;
LCA(v);
bing(u,v);
ancestor[find(u)]=u;//?
}
for(int i=h[u];i!=-1;i=query[i].next)
{
int v=query[i].q;
if(vis[v])
{
answer[query[i].index]=ancestor[find(v)];
}
}
} bool flag[MAXN];
int Count_num[MAXN];
int main()
{
int n;
int u,v,k;
while(scanf("%d",&n)==1)
{
init();
memset(flag,false,sizeof(flag));
for(int i=1;i<=n;i++)
{
scanf("%d:(%d)",&u,&k);
while(k--)
{
scanf("%d",&v);
flag[v]=true;
add_edge(u,v);
add_edge(v,u);
}
}
scanf("%d",&Q);
for(int i=0;i<Q;i++)
{
char ch;
cin>>ch;
scanf("%d %d)",&u,&v);
//cin>>ch;
add_query(u,v,i);
}
int root;
for(int i=1;i<=n;i++)//找到没有入度的点作为root
{
if(!flag[i])
{
root=i;
break;
}
}
LCA(root);
memset(Count_num,0,sizeof(Count_num));
for(int i=0;i<Q;i++)
{
Count_num[answer[i]]++;
}
for(int i=1;i<=n;i++)
{
if(Count_num[i]>0)
{
printf("%d:%d\n",i,Count_num[i]);
}
}
}
// getchar();getchar();
return 0;
} /*
5
5:(3) 1 4 2
1:(0)
4:(0)
2:(1) 3
3:(0)
6
(1 5) (1 4) (4 2) (2 3) (1 3) (4 3)
*/

POJ1470 LCA (Targan离线)的更多相关文章

  1. poj 1986 Distance Queries(LCA:倍增/离线)

    计算树上的路径长度.input要去查poj 1984. 任意建一棵树,利用树形结构,将问题转化为u,v,lca(u,v)三个点到根的距离.输出d[u]+d[v]-2*d[lca(u,v)]. 倍增求解 ...

  2. bzoj 3626 [LNOI2014]LCA(离线处理+树链剖分,线段树)

    3626: [LNOI2014]LCA Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 1272  Solved: 451[Submit][Status ...

  3. poj 1330 LCA (倍增+离线Tarjan)

    /* 先来个倍增 */ #include<iostream> #include<cstring> #include<cstdio> #define maxn 100 ...

  4. hdu2586How far away ?(LCA LCATarjan离线)

    题目链接:acm.hdu.edu.cn/showproblem.php?pid=2586 题目大意:有n个点,同n-1条带有权值的双向边相连,有m个询问,每个询问包含两个数x,y,求x与y的最短距离. ...

  5. POJ 1470 Closest Common Ancestors (LCA,离线Tarjan算法)

    Closest Common Ancestors Time Limit: 2000MS   Memory Limit: 10000K Total Submissions: 13372   Accept ...

  6. 最近公共祖先LCA Tarjan 离线算法

    [简介] 解决LCA问题的Tarjan算法利用并查集在一次DFS(深度优先遍历)中完成所有询问.换句话说,要所有询问都读入后才开始计算,所以是一种离线的算法. [原理] 先来看这样一个性质:当两个节点 ...

  7. LCA的离线快速求法

    最常见的LCA(树上公共祖先)都是在线算法,往往带了一个log.有一种办法是转化为"+-1最值问题"得到O(n)+O(1)的复杂度,但是原理复杂,常数大.今天介绍一种允许离线时接近 ...

  8. POJ 1470 Closest Common Ancestors (最近公共祖先LCA 的离线算法Tarjan)

    Tarjan算法的详细介绍,请戳: http://www.cnblogs.com/chenxiwenruo/p/3529533.html #include <iostream> #incl ...

  9. poj1470 LCA倍增法

    倍增法模板题 #include<iostream> #include<cstring> #include<cstdio> #include<queue> ...

随机推荐

  1. Linux系统上安装字体

    最近项目中需要控制字体类型,然后就上网查了一下在linux系统上安装字体,在window上和linux上,字体要求一样,都是ttf格式,下面这是window上的字体截图 在linux系统中的/usr/ ...

  2. Java 使用POI操作EXCEL及测试框架搭建、测试开发的一些想法

    无论是UI自动化测试还是接口自动化测试都需要进行数据驱动,一般很常见的一种方式就是用excel来管理数据,那么就涉及到一些代码对EXCEL的操作,之前我们介绍过用CSV来处理EXCEL,但是它的功能还 ...

  3. 2016.4.23浙江省赛(zoj3936 zoj3938 zoj3940 zoj3944 zoj3946 zoj3947 )

    A      Apples and Ideas Time Limit: 2 Seconds      Memory Limit: 65536 KB "If you have an apple ...

  4. [调试AvantCourier的笔记]

    1.manifest里不能设置target sdk 不然会出现stale error. 2.manifest里要有Internet权限 3

  5. 「LOJ#10034」「一本通 2.1 例 2」图书管理 (map

    题目描述 图书管理是一件十分繁杂的工作,在一个图书馆中每天都会有许多新书加入.为了更方便的管理图书(以便于帮助想要借书的客人快速查找他们是否有他们所需要的书),我们需要设计一个图书查找系统. 该系统需 ...

  6. Intellij IDEA 弹窗License activation 报 this license BIG3CLIK6F has been cancelled 错误的解决。

    this license BIG3CLIK6F has been cancelled 具体如下: 对,没错,这个激活码本来可以使用到2018年的,但是,忽然间就不能用了.经查询吧. 还得修改个系统配置 ...

  7. some characters cannot be mapped using iso-8859-1 character encoding

    Eclipse中新建一个.properties文件,如果输入中文保存时就会提示错误 Reason:some characters cannot be mapped using "ISO-88 ...

  8. bzoj4247挂饰——DP

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=4247 就是01背包: 把挂钩数限制在n以内,因为不需要更多,而这会带来一些问题,就是有很多挂 ...

  9. io_service work 的作用

    当有任务的时候,run函数会一直阻塞:但当没有任务了,run函数会返回,所有异步操作终止. 客户端程序中,如果我想连接断开后重连,由于连接断开了,run会返回,当再次重连的时候,由于run返回了,即使 ...

  10. 利用PDF.JS插件解决了本地pdf文件在线浏览问题(根据需要隐藏下载功能,只保留打印功能)

    我是在IE11和谷歌上做的测试,都可以显示,把做出的东西记录下来,方便大家还有自己学习! 可以在IIS7服务器上也可以下载Tomcat来做服务器 Tomcat下载地址   http://pan.bai ...