[JLOI2016]圆的异或并
Description
在平面直角坐标系中给定N个圆。已知这些圆两两没有交点,即两圆的关系只存在相离和包含。求这些圆的异或面积并。异或面积并为:当一片区域在奇数个圆内则计算其面积,当一片区域在偶数个圆内则不考虑。
Input
第一行包含一个正整数N,代表圆的个数。接下来N行,每行3个非负整数x,y,r,表示一个圆心在(x,y),半径为r的圆。保证|x|,|y|,≤10^8,r>0,N<=200000
Output
仅一行一个整数,表示所有圆的异或面积并除以圆周率Pi的结果。
Sample Input
2
0 0 1
0 0 2
Sample Output
3
由于圆只存在包含与相离的关系,所以我们可以用扫描线,把圆看成一对对括号
然后判断一段区域的奇偶性,统计答案即可
至于对括号的维护,我们可以用set维护其相对位置即可
/*program from Wolfycz*/
#include<set>
#include<cmath>
#include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm>
#define Fi first
#define Se second
#define inf 0x7f7f7f7f
#define sqr(x) ((x)*(x))
using namespace std;
typedef long long ll;
typedef long double ld;
typedef unsigned int ui;
typedef unsigned long long ull;
inline char gc(){
static char buf[1000000],*p1=buf,*p2=buf;
return p1==p2&&(p2=(p1=buf)+fread(buf,1,1000000,stdin),p1==p2)?EOF:*p1++;
}
inline int frd(){
int x=0,f=1; char ch=gc();
for (;ch<'0'||ch>'9';ch=gc()) if (ch=='-') f=-1;
for (;ch>='0'&&ch<='9';ch=gc()) x=(x<<3)+(x<<1)+ch-'0';
return x*f;
}
inline int read(){
int x=0,f=1; char ch=getchar();
for (;ch<'0'||ch>'9';ch=getchar()) if (ch=='-') f=-1;
for (;ch>='0'&&ch<='9';ch=getchar()) x=(x<<3)+(x<<1)+ch-'0';
return x*f;
}
inline void print(int x){
if (x<0) putchar('-'),x=-x;
if (x>9) print(x/10);
putchar(x%10+'0');
}
const int N=2e5;
const double eps=1e-8;
double A[N+10],B[N+10],R[N+10],Nx;
struct node{
int type,ID;
node(int _type=0,int _ID=0){type=_type,ID=_ID;}
void insert(int _type,int _ID){type=_type,ID=_ID;}
double T(){return B[ID]+(double)type*(sqrt(sqr(R[ID])-sqr(Nx-A[ID]))+eps);}
};
bool operator <(node a,node b){return a.T()-b.T()<-eps;}
struct S1{
int type,v,ID;
void insert(int _type,int _v,int _ID){type=_type,v=_v,ID=_ID;}
bool operator <(const S1 &tis)const{return v<tis.v;}
}opr[(N<<1)+10];//operator
bool can[N+10];
set<node>ST;
int main(){
int n=read(),cnt=0; ll Ans=0;
for (int i=1;i<=n;i++){
scanf("%lf%lf%lf",A+i,B+i,R+i);
opr[++cnt].insert( 1,A[i]-R[i],i);
opr[++cnt].insert(-1,A[i]+R[i],i);
}
sort(opr+1,opr+1+cnt);
for (int i=1;i<=cnt;i++){
Nx=opr[i].v;
if (opr[i].type>0){
set<node>::iterator it=ST.insert(node(1,opr[i].ID)).Fi;
if (it==ST.begin()) can[opr[i].ID]=1;
else{
it--;
can[opr[i].ID]=can[(*it).ID]^((*it).type<0);
}
Ans+=(can[opr[i].ID]?1:-1)*sqr(R[opr[i].ID]);
ST.insert(node(-1,opr[i].ID));
}else{
ST.erase(node( 1,opr[i].ID));
ST.erase(node(-1,opr[i].ID));
}
}
printf("%lld\n",Ans);
return 0;
}
[JLOI2016]圆的异或并的更多相关文章
- bzoj4561: [JLoi2016]圆的异或并 圆的扫描线
地址:http://www.lydsy.com/JudgeOnline/problem.php?id=4561 题目: 4561: [JLoi2016]圆的异或并 Time Limit: 30 Sec ...
- BZOJ4561 JLoi2016 圆的异或并 【扫描线】【set】*
BZOJ4561 JLoi2016 圆的异或并 Description 在平面直角坐标系中给定N个圆.已知这些圆两两没有交点,即两圆的关系只存在相离和包含.求这些圆的异或面积并.异或面积并为:当一片区 ...
- 【BZOJ4561】[JLoi2016]圆的异或并 扫描线
[BZOJ4561][JLoi2016]圆的异或并 Description 在平面直角坐标系中给定N个圆.已知这些圆两两没有交点,即两圆的关系只存在相离和包含.求这些圆的异或面积并.异或面积并为:当一 ...
- bzoj4561: [JLoi2016]圆的异或并
Description 在平面直角坐标系中给定N个圆.已知这些圆两两没有交点,即两圆的关系只存在相离和包含.求这些圆的异或面 积并.异或面积并为:当一片区域在奇数个圆内则计算其面积,当一片区域在偶数个 ...
- bzoj 4561: [JLoi2016]圆的异或并
Description 在平面直角坐标系中给定N个圆.已知这些圆两两没有交点,即两圆的关系只存在相离和包含.求这些圆的异或面 积并.异或面积并为:当一片区域在奇数个圆内则计算其面积,当一片区域在偶数个 ...
- BZOJ 4561 [JLoi2016]圆的异或并 ——扫描线
扫描线的应用. 扫描线就是用数据结构维护一个相对的顺序不变,带修改的东西. 通常只用于一次询问的情况. 抽象的看做一条垂直于x轴直线从左向右扫过去. 这道题目要求求出所有圆的异或并. 所以我们可以求出 ...
- 洛谷P3268 [JLOI2016]圆的异或并(扫描线)
扫描线还不是很熟啊--不管是从想的方面还是代码实现的方面-- 关于这题,考虑一条平行于\(y\)轴的扫描线从左到右扫描每一个圆,因为只有相离和内含两种关系,只用在切线处扫描即可 我们设上半圆为1,下半 ...
- 【BZOJ】4561: [JLoi2016]圆的异或并
题解 我们把圆拆成两个圆弧,按照圆弧的左右端点排序来增加和删除 那么我们把圆弧按照纵坐标排序,一定是两两不相交的 我们新加入一个圆的时候,找上圆弧的前驱,如果前驱是一个上圆弧,那么这个上圆弧所在的圆就 ...
- BZOJ4561 JLOI2016圆的异或并(扫描线+平衡树)
考虑一条扫描线从左到右扫过这些圆.观察某一时刻直线与这些圆的交点,可以发现构成一个类似括号序列的东西,括号的包含关系与圆的包含关系是相同的.并且当扫描线逐渐移动时,括号间的相对顺序不变.于是考虑用se ...
随机推荐
- 使用ffmpeg添加logo
1 网上搜出的一些ffmpeg添加logo的命令都不成功,调查了官方手册后以下这种用法成功: ffmpeg -y -i input.mp4 -vf "movie=logo.png [logo ...
- the art of seo(chapter one)
preface:Andy Johns (@ibringtraffic):growth strategist@Wealthfront ***1.Search Reflecting Consciousne ...
- HihoCoder1576 子树中的最小权值( dfs序 +线段树 || 树剖)
给定一棵N个节点的树,编号1~N.其中1号节点是根,并且第i个节点的权值是Vi. 针对这棵树,小Hi会询问小Ho一系列问题.每次小Hi会指定一个节点x,询问小Ho以x为根的子树中,最小的权值是多少.为 ...
- 解决js 运算 精度缺失
github地址: https://github.com/MikeMcl/big.js
- 2018值得选用的五个Linux服务器发行版
[IT168 编译]据最新统计,目前Linux发行版约有300种,几乎都可以作为服务器系统运行.在Linux早期,几乎所有发行版都是“万能”发行版,专门的Linux服务器发行版并不火热,到21世纪初, ...
- mysql 入门 1
连接mysql服务器 mysql -h localhost -u username -ppasswd 1.查看服务器存在的库 show databases; 2.创建数据库 create databa ...
- docker 学习(五) virtualBox虚拟机安装docker
这里计划用virtualBox虚拟机安装两个ubuntu servers, 然后用docker把spring boot项目部署上去,模拟一下分布式的微服务情况. 1:安装virtualbox,后安装U ...
- 运用Eclipse的Working Set,界面清爽多了
使用Eclipse的Working Set,界面清爽多了 想必大家的Eclipse里也会有这么多得工程...... 每次工作使用到的项目肯定不会太多...... 每次从这么大数量的工程当中找到自己要使 ...
- 【Data Structure & Algorithm】在排序数组中查找和为定值的两个数
在排序数组中查找和为定值的两个数 题目:输入一个已经按升序排序过的数组和一个数字,在数组中查找两个数,使得它们的和正好是输入的那个数字,要求时间复杂度是O(n).如果有多对数字的和等于输入的数字,输出 ...
- PHP实用小程序(三)
<HTML> <HEAD> <TITLE>给数组增加元素</TITLE> </HEAD> <? $Cities[] = "& ...