直接斐波那契。。。

#include<stdio.h>
#include<queue>
#include<string.h>
#include<iostream>
#include<algorithm>
using namespace std;
typedef long long LL;
const int INF=0x3f3f3f3f;
const LL mod=1e9+7; LL a[1010];
int main()
{
a[1]=1;
a[2]=2;
for(int i=3;i<=1000;i++)
a[i]=(a[i-1]+a[i-2])%mod;
LL n;
scanf("%lld",&n);
printf("%lld\n",a[n]);
return 0;
}

斐波那契和杨辉三角上的组合数知识

斐波那契数列并不陌生,F(N)=F(N-1)+F(N-2);

f⑴=C(0,0)=1。

f⑵=C(1,0)=1。

f⑶=C(2,0)+C(1,1)=1+1=2。

f⑷=C(3,0)+C(2,1)=1+2=3。

f⑸=C(4,0)+C(3,1)+C(2,2)=1+3+1=5。

f⑹=C(5,0)+C(4,1)+C(3,2)=1+4+3=8。

F⑺=C(6,0)+C(5,1)+C(4,2)+C(3,3)=1+5+6+1=13。

……

F(n)=C(n-1,0)+C(n-2,1)+…+C(n-1-m,m)(m<=n-1-m)【重要】!

上面的图形非常像杨辉三角,但是还差一点;

杨辉三角:

1

1         1

1        2          1

1          3 
3        1

1
     4    6 
      4      1

1         5      10 
      10   5 
  1

1      6  15
 20     16       6  1

给出几个重要的性质

1.     每个数等于它上方两数之和。

2.     第n行数字和为2n-1

3.     第n行的m个数可表示为 C(n-1,m-1),即为从n-1个不同元素中取m-1个元素的组合数。

4.    每个数字等于上一行的左右两个数字之和。可用此性质写出整个杨辉三角。即第n+1行的第i个数等于第n行的第i-1个数和第i个数之和,这也是组合数的性质之一。即 C(n+1,i)=C(n,i)+C(n,i-1)

5.       (a+b)n的展开式中的各项系数
依次对应杨辉三角的第(n+1)行中的每一项。

 



51nod 1031+斐波那契和杨辉三角的一些基础知识的更多相关文章

  1. 51nod 1242 斐波那契数列的第N项

    之前一直没敢做矩阵一类的题目 其实还好吧 推荐看一下 : http://www.cnblogs.com/SYCstudio/p/7211050.html 但是后面的斐波那契 推导不是很懂  前面讲的挺 ...

  2. 51Nod - 1242 斐波那契(快速幂)

    斐波那契数列的定义如下:   F(0) = 0 F(1) = 1 F(n) = F(n - 1) + F(n - 2) (n >= 2)   (1, 1, 2, 3, 5, 8, 13, 21, ...

  3. (矩阵快速幂)51NOD 1242斐波那契数列的第N项

    斐波那契数列的定义如下:   F(0) = 0 F(1) = 1 F(n) = F(n - 1) + F(n - 2) (n >= 2)   (1, 1, 2, 3, 5, 8, 13, 21, ...

  4. 51nod 1355 - 斐波那契的最小公倍数(Min-Max 容斥+莫比乌斯反演)

    vjudge 题面传送门 首先我们知道斐波那契数列的 lcm 是不太容易计算的,但是它们的 gcd 非常容易计算--\(\gcd(f_x,f_y)=f_{\gcd(x,y)}\),该性质已在我的这篇博 ...

  5. 51nod 1350 斐波那契表示(递推+找规律)

    传送门 题意 分析 我们发现该数列遵循下列规律: 1 1,2 1,2,2 1,2,2,2,3 1,2,2,2,3,2,3,3 我们令A[i]表示f[i]开始长为f[i-1]的i的最短表示和 那么得到A ...

  6. 51Nod 1242 斐波那契数列的第N项(矩阵快速幂)

    #include <iostream> #include <algorithm> using namespace std; typedef long long LL; ; ; ...

  7. 51nod 1242 斐波那契数列的第N项——数学、矩阵快速幂

    普通算法肯定T了,所以怎么算呢?和矩阵有啥关系呢? 打数学符号太费时,就手写了: 所以求Fib(n)就是求矩阵  |  1  1  |n-1  第一行第一列的元素. |  1  0  | 其实学过线代 ...

  8. 斐波那契查找(Fibonacci Search)

    斐波那契查找 斐波那契查找就是在二分查找的基础上根据斐波那契数列进行分割的.   在斐波那契数列找一个等于略大于查找表中元素个数的数F[n],将原查找表扩展为长度为F[n](如果要补充元素,则补充重复 ...

  9. 斐波那契数列 51nod

    1242 斐波那契数列的第N项 基准时间限制:1 秒 空间限制:131072 KB 分值: 0 难度:基础题  收藏  关注 斐波那契数列的定义如下:   F(0) = 0 F(1) = 1 F(n) ...

随机推荐

  1. spring boot Mybatis多数据源配置

    关于 有时候,随着业务的发展,项目关联的数据来源会变得越来越复杂,使用的数据库会比较分散,这个时候就会采用多数据源的方式来获取数据.另外,多数据源也有其他好处,例如分布式数据库的读写分离,集成多种数据 ...

  2. linux关机命令详解(转载)

    在linux下一些常用的关机/重启命令有shutdown.halt.reboot.及init,它们都可以达到重启系统的目的,但每个命令的内部工作过程是不同的. Linux centos重启命令: 1. ...

  3. Android活动条(actionbar)使用具体解释(一)

        活动条(ActionBar)是Android3.0的重要更新之中的一个.ActionBar位于传统标题的位置,其主要提供了例如以下功能:     >显示选项菜单的菜单项,即激昂菜单项显示 ...

  4. EasyIPCamera实现Windows PC桌面、安卓Android桌面同屏直播,助力无纸化会议系统

    最近在EasyDarwin开源群里,有不少用户私信需求,要做一种能够多端同屏的系统,细分下来有屏幕采集端和同屏端,屏幕采集端细想也就是一个低延时的流媒体音视频服务器,同屏端也就是一个低延时的播放器,负 ...

  5. You're trying to decode an invalid JSON String JSON返回有解析问题

    SpringMVC架构的web程序,通常用map返回消息在浏览器中显示,但是实际中报下列错误“”You're trying to decode an invalid JSON String“返回的字符 ...

  6. JQuery 如何获取select选中的值

    一.html代码 <select id="ddl"> <option value="100" emoney="12" &g ...

  7. Linux就该这么学--命令集合5(用户与组管理命令)

    1.useradd命令用于创建新用户:(useradd [选项] 用户名) 附录: -d 指定用户的家目录 -D 展示默认值 -e 账号有效截止日期,格式:YYY-MM-DD -g 指定一个初始用户组 ...

  8. Web UI回归测试 -- BackstopJS 入门

    BackstopJS是一个测试工具,用于测试ui图和实际项目是否偏差. 话不多说,直接启动一个项目吧测试吧. 1.首先全局安装BackstopJS npm install -g backstopjs ...

  9. Redis雪崩效应以及解决方案

    缓存雪崩产生的原因 缓存雪崩通俗简单的理解就是:由于原有缓存失效(或者数据未加载到缓存中),新缓存未到期间(缓存正常从Redis中获取,如下图)所有原本应该访问缓存的请求都去查询数据库了,而对数据库C ...

  10. python多进程执行任务

    https://blog.csdn.net/qq_39694935/article/details/84552076 [Python]multiprocessing Pool 进程间通信共享 直接上代 ...