HDU3666 THE MATRIX PROBLEM (差分约束+取对数去系数)(对退出情况存疑)
InputThere are several test cases. You should process to the end of file.
Each case includes two parts, in part 1, there are four integers in one line, N,M,L,U, indicating the matrix has N rows and M columns, L is the lowerbound and U is the upperbound (1<=N、M<=400,1<=L<=U<=10000). In part 2, there are N lines, each line includes M integers, and they are the elements of the matrix.
OutputIf there is a solution print "YES", else print "NO".Sample Input
3 3 1 6
2 3 4
8 2 6
5 2 9
Sample Output
YES
题意:问是否满足每行乘一个相同的正实数,然后每一列除一个相同的正实数,使得矩阵李每一个数在[L,U]内。
思路:化简后是带系数的不等系组,L*Bj<=X*Ai<=U*Bj,那么取对数即可,把Ai和Bj的系数化为1,然后差分约束即可。
1,是求是否可行,而不是求最大最小。所以用最长路判正环也行,用最短路判负环亦可。因为如过不可行,那么既无最大,也没有最小;而如果有可行解,那么既有最大,又有最小。
2,判环的时候如果按进队次数大于n+m时时退出会超时,所以加了qsrt,虽然我不知道这样是否科学。。。存疑。
3,本题自己限定了正数,方便求解,也避免负时不等号要改变方向。
#include<cmath>
#include<queue>
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<iostream>
#include<algorithm>
using namespace std;
const int maxn=;
const double inf=0x7fffffff;
int Laxt[maxn],Next[maxn<<],To[maxn<<];
int vis[maxn],inq[maxn],cnt,n,m;
double dis[maxn],Len[maxn<<];
void update()
{
cnt=;
memset(Laxt,,sizeof(Laxt));
memset(vis,,sizeof(vis));
memset(inq,,sizeof(inq));
}
void add(int u,int v,double d)
{
Next[++cnt]=Laxt[u];
Laxt[u]=cnt;
To[cnt]=v;
Len[cnt]=d;
}
bool spfa()
{
int times=;
for(int i=;i<=n+m;i++) dis[i]=-inf;
queue<int>q;
q.push(); dis[]=; inq[]=;
while(!q.empty()){
if(times>*(n+m)) return false;
int u=q.front(); q.pop(); inq[u]=;
for(int i=Laxt[u];i;i=Next[i]){
int v=To[i];
if(dis[v]<dis[u]+Len[i]){
dis[v]=dis[u]+Len[i];
if(!inq[v]){
inq[v]=; vis[v]++; q.push(v); times++;
if(vis[v]>sqrt(n+m)) return false;
}
}
}
} return true;
}
int main()
{
int i,j; double x,L,U;
while(~scanf("%d%d%lf%lf",&n,&m,&L,&U)){
update();
L=log10(L);U=log10(U);
for(i=;i<=n;i++)
for(j=;j<=m;j++){
scanf("%lf",&x);
add(n+j,i,L-log10(x));
add(i,n+j,-U+log10(x));
}
for(i=;i<=n+m;i++) add(,i,);
if(spfa()) printf("YES\n");
else printf("NO\n");
} return ;
}
//1,知道要去对数;2,判定时的投机取巧。
HDU3666 THE MATRIX PROBLEM (差分约束+取对数去系数)(对退出情况存疑)的更多相关文章
- HDU3666-THE MATRIX PROBLEM(差分约束-不等式解得存在性判断 对数转化)
You have been given a matrix C N*M, each element E of C N*M is positive and no more than 1000, The p ...
- HDU 3666 THE MATRIX PROBLEM (差分约束)
题意:给定一个最大400*400的矩阵,每次操作可以将某一行或某一列乘上一个数,问能否通过这样的操作使得矩阵内的每个数都在[L,R]的区间内. 析:再把题意说明白一点就是是否存在ai,bj,使得l&l ...
- hduTHE MATRIX PROBLEM(差分约束)
题目请戳这里 题目大意:给一个n*m的矩阵,求是否存在这样两个序列:a1,a2...an,b1,b2,...,bm,使得矩阵的第i行乘以ai,第j列除以bj后,矩阵的每一个数都在L和U之间. 题目分析 ...
- HDU 3666.THE MATRIX PROBLEM 差分约束系统
THE MATRIX PROBLEM Time Limit: 4000/2000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Other ...
- hdu 1534 Schedule Problem (差分约束)
Schedule Problem Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others) ...
- HDOJ 1534 Schedule Problem 差分约束
差分约数: 求满足不等式条件的尽量小的值---->求最长路---->a-b>=c----> b->a (c) Schedule Problem Time Limit: 2 ...
- 【转】最短路&差分约束题集
转自:http://blog.csdn.net/shahdza/article/details/7779273 最短路 [HDU] 1548 A strange lift基础最短路(或bfs)★254 ...
- 转载 - 最短路&差分约束题集
出处:http://blog.csdn.net/shahdza/article/details/7779273 最短路 [HDU] 1548 A strange lift基础最短路(或bfs)★ ...
- 鉴于spfa基础上的差分约束算法
怎么搞? 1. 如果要求最大值 想办法把每个不等式变为标准x-y<=k的形式,然后建立一条从y到x权值为k的边,变得时候注意x-y<k =>x-y<=k ...
随机推荐
- CUDA 实现JPEG图像解码为RGB数据
了解JPEG数据格式的人应该easy想到.其对图像以8*8像素块大小进行切割压缩的方法非常好用并行处理的思想来实现.而其实英伟达的CUDA自v5.5開始也提供了JPEG编解码的演示样例.该演示样例存储 ...
- 关于Oracle中sysoper这个系统权限的问题
我们都知道Oracle数据库安装完之后.默认的会有这样几个系统角色或权限.nomal,sysdba,sysoper等等,之前每次登录Oracle的时候.都是直接以conn / as sysdba 的身 ...
- eclipse工具栏sdk和avd图标
打开菜单Window -> Customize Perspective -> Command Groups Availability -> 勾选Android SDK and AVD ...
- C++编译错误 2001 1120
无法解析的外部符号"symbol" 代码引用了链接器无法在库和对象文件中找到的内容(如函数.变量或标签). 该错误信息之后为错误 LNK1120. 可能的原因 : 在将托管库或 W ...
- Ubuntu 登陆异常-输入正确的密码后还会返回到登陆界面的问题
问题表现: 启动到了登陆界面,输入对应的密码,发现一闪黑屏有返回到登陆界面,如此往复. 解决方法: 开机后在登陆界面按下shift + ctrl + F1进入tty命令行终端登陆,可以查看用户主目录下 ...
- FPGA机器学习之机器学习的n中算法总结1
机器学习是AI领域的重要一门学科.前面我描写叙述过.我计划从事的方向是视觉相关的机器学习分类识别,所以可能在每一个算法的分析中,仅仅增加在视频.视觉领域的作用. 我毛华望QQ849886241.技术博 ...
- [oracle]pl/sql --分页过程demo
这句sql能够用来查询一张表中的特定位置的记录 --查询的方法获取分页的语句 select *from (select t1.*,rownum rn from (select *from books) ...
- soap的调用方式
1.方式1 url:http://localhost:3651/recruit/index.asmx?WSDL post 内容: <soapenv:Envelope xmlns:soape ...
- PE添加Style
1. <style id="NumberStyle"> <setting> <param name="option"> ...
- C# - Garbage Collection
The .NET Framework's garbage collector manages the allocation and release of memory for your appl ...