题目链接:

The All-purpose Zero

Time Limit: 2000/1000 MS (Java/Others)   

 Memory Limit: 65536/65536 K (Java/Others)

Problem Description
 
?? gets an sequence S with n intergers(0 < n <= 100000,0<= S[i] <= 1000000).?? has a magic so that he can change 0 to any interger(He does not need to change all 0 to the same interger).?? wants you to help him to find out the length of the longest increasing (strictly) subsequence he can get.
 
Input
 
The first line contains an interger T,denoting the number of the test cases.(T <= 10)
For each case,the first line contains an interger n,which is the length of the array s.
The next line contains n intergers separated by a single space, denote each number in S.
 
Output
 
For each test case, output one line containing “Case #x: y”(without quotes), where x is the test case number(starting from 1) and y is the length of the longest increasing subsequence he can get.
 
Sample Input
 
2
7
2 0 2 1 2 0 5
6
1 2 3 3 0 0
 
Sample Output
 
Case #1: 5
Case #2: 5
 
题意:
 
给一个序列,这里面的0可以变成任何整数;问能得到的LIS的长度是多少;
 
思路:
 
是题解给的思路,当时一直想不通的是如这样的  4 0 5的序列,0夹在两个相邻整数之间,怎么0就会全部用上了呢?后来才知道可以把0当成后面的那个5啊,所以说0才会全部用上;这是一个关键点,0全部用上,然后求LIS的时候先把0都拿走,当是要给这些0留下空间,怎么办呢?就是每个数减去它前边0的个数,这时两个数的差与之前的差相比,减少了这两个数之间0的个数;所以才保证了既是单调,又让0一定在其中;
 
AC代码:
 
/************************************************
┆ ┏┓   ┏┓ ┆
┆┏┛┻━━━┛┻┓ ┆
┆┃       ┃ ┆
┆┃   ━   ┃ ┆
┆┃ ┳┛ ┗┳ ┃ ┆
┆┃       ┃ ┆
┆┃   ┻   ┃ ┆
┆┗━┓   ┏━┛ ┆
┆  ┃   ┃  ┆      
┆  ┃   ┗━━━┓ ┆
┆  ┃  AC代马   ┣┓┆
┆  ┃    ┏┛┆
┆  ┗┓┓┏━┳┓┏┛ ┆
┆   ┃┫┫ ┃┫┫ ┆
┆   ┗┻┛ ┗┻┛ ┆
************************************************ */ #include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <cmath>
#include <bits/stdc++.h>
#include <stack> using namespace std; #define For(i,j,n) for(int i=j;i<=n;i++)
#define mst(ss,b) memset(ss,b,sizeof(ss)); typedef long long LL; template<class T> void read(T&num) {
char CH; bool F=false;
for(CH=getchar();CH<'0'||CH>'9';F= CH=='-',CH=getchar());
for(num=0;CH>='0'&&CH<='9';num=num*10+CH-'0',CH=getchar());
F && (num=-num);
}
int stk[70], tp;
template<class T> inline void print(T p) {
if(!p) { puts("0"); return; }
while(p) stk[++ tp] = p%10, p/=10;
while(tp) putchar(stk[tp--] + '0');
putchar('\n');
} const LL mod=20071027;
const double PI=acos(-1.0);
const int inf=1e9;
const int N=1e5+100;
const int maxn=(1<<8);
const double eps=1e-8; int a[N],sum,d[N],g[N]; int main()
{
int t,Case=0;
read(t);
while(t--)
{
int n,cnt=0,x;
read(n);
sum=0;
For(i,1,n)
{
read(x);
if(x==0)sum++;
else a[++cnt]=x-sum;
g[i]=inf;
}
int ans=0;
For(i,1,cnt)
{
int temp=lower_bound(g+1,g+cnt+1,a[i])-g;
g[temp]=a[i];
ans=max(ans,temp);
}
printf("Case #%d: %d\n",++Case,ans+sum);
}
return 0;
}

  

hdu-5773 The All-purpose Zero(LIS)的更多相关文章

  1. HDU 5773 The All-purpose Zero (变形LIS)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=5773 0可以改变成任何数,问你严格递增的子序列最长是多少. 猜测0一定在最长上升子序列中用到,比如2 ...

  2. HDU 5773 The All-purpose Zero 求LIS

    求最长上升子序列长度: 单纯的dp时间复杂度是O(n*n)的 dp[i] = max(dp[j]+1); (0=<j<=i-1 && a[i]>a[j]) 用二分可以 ...

  3. HDU 5773 The All-purpose Zero 脑洞LIS

    给定一个序列,里面的0是可以任变的.问变化后最长的LIS的长度 首先,0全部选上是不亏的.这个不知道怎么说,YY一下吧. 最关键的就是解决2 0 0 3 这种问题了. 注意到这个序列的LIS应该是3 ...

  4. hdu 5773 The All-purpose Zero 最长上升子序列+树状数组

    题目链接:hdu 5773 The All-purpose Zero 官方题解:0可以转化成任意整数,包括负数,显然求LIS时尽量把0都放进去必定是正确的. 因此我们可以把0拿出来,对剩下的做O(nl ...

  5. HDU 5773 The All-purpose Zero(O(nlgn)求LIS)

    http://acm.hdu.edu.cn/showproblem.php?pid=5773 题意: 求LIS,其中的0可以看做任何数. 思路: 因为0可以看做任何数,所以我们可以先不管0,先求一遍L ...

  6. HDU 5773:The All-purpose Zero(贪心+LIS)

    http://acm.hdu.edu.cn/showproblem.php?pid=5773 The All-purpose Zero Problem Description   ?? gets an ...

  7. hdu 5773 The All-purpose Zero 线段树 dp

    The All-purpose Zero 题目连接: http://acm.hdu.edu.cn/showproblem.php?pid=5773 Description ?? gets an seq ...

  8. HDU 5087 (线性DP+次大LIS)

    题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=5087 题目大意:求次大LIS的长度.注意两个长度相同的LIS大小比较,下标和大的LIS较大. 解题思 ...

  9. 【动态规划】【二分】【最长上升子序列】HDU 5773 The All-purpose Zero

    题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=5773 题目大意: T组数据,n个数(n<=100000),求最长上升子序列长度(0可以替代任何 ...

  10. HDU 5773 The All-purpose Zero(树状数组)

    [题目链接] http://acm.hdu.edu.cn/showproblem.php?pid=5773 [题目大意] 给出一个非负整数序列,其中的0可以替换成任意整数,问替换后的最长严格上升序列长 ...

随机推荐

  1. 邁向IT專家成功之路的三十則鐵律 鐵律三:IT人長久之道–站對邊

    這一回來談談IT人對於技術的學習.對於一位專業的IT人來說,在自己有興趣的技術領域之中,究竟要如何來正確選擇學習的方向呢?關於這個問題的答案,筆者個人深深體會到這確實會成為一位專業IT人士的長久經營之 ...

  2. Python爬虫之路——简单网页抓图升级版(添加多线程支持)

    转载自我的博客:http://www.mylonly.com/archives/1418.html 经过两个晚上的奋斗.将上一篇文章介绍的爬虫略微改进了下(Python爬虫之路--简单网页抓图),主要 ...

  3. Python 实现二维码生成和识别

    今天突然想给自己自己做个头像,然后还是二维码的形式,这样只要扫一扫就可以访问我的主页.然后就开始自己的苦逼之路... 其实实现二维码java,c#,C++等都可以实现:由于自己正在学python,所以 ...

  4. gvim的常用编辑快捷键

    gvim的快捷键很多,很难记全,但是入门初期应该找过几种基本的命令 下面结合自己常用到的介绍下 光标跳转: 0:行首 $:行尾 e:下一个单词的结尾 w:下一个单词的开头 b:上一个单词 H:当前页面 ...

  5. 查找——图文翔解SkipList(跳跃表)

    跳跃表 跳跃列表(也称跳表)是一种随机化数据结构,基于并联的链表,其效率可比拟于二叉查找树(对于大多数操作须要O(logn)平均时间). 基本上.跳跃列表是对有序的链表添加上附加的前进链接,添加是以随 ...

  6. Hibernate Restrictions QBC运算符

    HQL运算符 QBC运算符 含义 = Restrictions.eq() 等于equal <>  Restrictions.ne() 不等于not equal >  Restrict ...

  7. Hazelcast与MongoDB集成

    Hazelcast与MongoDB集成 作者:chszs,未经博主同意不得转载.经许可的转载需注明作者和博客主页:http://blog.csdn.net/chszs 一.Hazelcast与Mong ...

  8. UVA 11578 - Situp Benches(dp)

    题目链接:11578 - Situp Benches 题意:健♂身♂房有两个仰卧起坐坐垫,每次调整角度要花费10元/10度,每次使用要花费15,如今给定n个人的时间顺序,和所希望的角度,求最少花费 思 ...

  9. Linaro/Yocto/Openwrt

    http://en.wikipedia.org/wiki/Linaro Linaro From Wikipedia, the free encyclopedia     This article ap ...

  10. 实习日记)select option 选择不同的option时, 页面发生不同的变化

    怎么在下拉框的选择不同的option时, 页面发生响应的变化 因为option是没有点击事件什么的,  只有select才有, 所以不能通过option的点击事件来完成, 所以开始的尝试都失败了(之前 ...