题解

#include <iostream>
#include <cstdio>
#include <algorithm>
#include <cmath>
#include <cstring>
#define ll long long
using namespace std;
const int MOD = 1e9 + 9, MAXN = 100005;
int T, n, num[MAXN], head[MAXN], nume, id[MAXN], hav[MAXN];
ll fac[MAXN], ni[MAXN];
struct edge{
int to, nxt;
}e[MAXN<<1];
void adde(int from, int to) {
e[++nume].to = to;
e[nume].nxt = head[from];
head[from] = nume;
}
ll quick_mod(ll a, ll k) {
if(!a) return 0ll;
if(k <= 0) return 1ll;
ll ans = 1;
while(k) {
if(k & 1ll) (ans *= a) %= MOD;
(a *= a) %= MOD;
k >>= 1;
}
return ans % MOD;
}
void dfs(int u, int cur) {
id[u] = cur;
for(int i = head[u]; i; i = e[i].nxt) {
int v = e[i].to;
if(!id[v]) dfs(v, cur);
}
}
int main() {
cin >> T;
fac[0] = 1;
for(int i = 1; i <= 100000; i++) fac[i] = fac[i - 1] * i % MOD;
ni[100000] = quick_mod(fac[100000], MOD - 2);
for(int i = 100000 - 1; i >= 0; i--) (ni[i] = ni[i + 1] * (i + 1)) %= MOD;
while(T--) {
cin >> n;
memset(head, 0, sizeof(head));
memset(id, 0, sizeof(id));
memset(hav, 0, sizeof(hav));
nume = 0;
for(int i = 1; i <= n; i++) scanf("%d", &num[i]), adde(i, num[i]);
int cnt = 0;
for(int i = 1; i <= n; i++) if(!id[i]) dfs(i, ++cnt);
for(int i = 1; i <= n; i++) hav[id[i]]++;
ll ans = 1ll;
for(int i = 1; i <= cnt; i++) (ans *= quick_mod(hav[i], hav[i] - 2)) %= MOD;
(ans *= fac[n - cnt]) %= MOD;
for(int i = 1; i <= cnt; i++) (ans *= ni[hav[i] - 1]) %= MOD;
printf("%lld\n", ans);
}
return 0;
}

LFYZOJ 104 Counting Swaps的更多相关文章

  1. CH3602 Counting Swaps

    题意 3602 Counting Swaps 0x30「数学知识」例题 背景 https://ipsc.ksp.sk/2016/real/problems/c.html Just like yeste ...

  2. Counting swaps

    Counting swaps 给你一个1-n的排列,问用最少的交换次数使之变为递增排列的方案数\(mod\ 10^9+7\),1 ≤ n ≤ 10^5. 解 显然最少的交换次数不定,还得需要找到最小交 ...

  3. 洛谷P4778 Counting swaps 数论

    正解:数论 解题报告: 传送门! 首先考虑最终的状态是固定的,所以可以知道初始状态的每个数要去哪个地方,就可以考虑给每个数$a$连一条边,指向一个数$b$,表示$a$最后要移至$b$所在的位置 显然每 ...

  4. luogu P4778 Counting swaps

    计数套路题?但是我连套路都不会,,, 拿到这道题我一脸蒙彼,,,感谢@poorpool 大佬的博客的指点 先将第\(i\)位上的数字\(p_i\)向\(i\)连无向边,然后构成了一个有若干环组成的无向 ...

  5. lfyzoj104 Counting Swaps

    问题描述 给定你一个 \(1 \sim n\) 的排列 \(\{p_i\}\),可进行若干次操作,每次选择两个整数 \(x,y\),交换 \(p_x,p_y\). 请你告诉穰子,用最少的操作次数将给定 ...

  6. luoguP4778 Counting swaps

    题目链接 题解 首先,对于每个\(i\)向\(a[i]\)连边. 这样会连出许多独立的环. 可以证明,交换操作不会跨越环. 每个环内的点到最终状态最少交换步数是 \(环的大小-1\) 那么设\(f[i ...

  7. P4778 Counting Swaps 题解

    第一道 A 掉的严格意义上的组合计数题,特来纪念一发. 第一次真正接触到这种类型的题,给人感觉好像思维得很发散才行-- 对于一个排列 \(p_1,p_2,\dots,p_n\),对于每个 \(i\) ...

  8. Java集合---Array类源码解析

    Java集合---Array类源码解析              ---转自:牛奶.不加糖 一.Arrays.sort()数组排序 Java Arrays中提供了对所有类型的排序.其中主要分为Prim ...

  9. Java Arrays.sort源代码解析

    前提: 当用到scala的sortWith,发现: def sortWith(lt: (A, A) ⇒ Boolean): List[A] // A为列表元素类型 根据指定比较函数lt进行排序,且排序 ...

随机推荐

  1. linux - mysql 安装教程

    环境介绍>>>>>>>>>>>>>>>>>> 操作系统:Centos 7 mysql数据库版 ...

  2. 使用lua实现Spine动画的预加载

    创建spine动画有两种方法,分别是createwithfile和createwithdata. createWithFile是通过加载动作数据马上进行创建,如果spine动画中的json文件大小超过 ...

  3. Linux-Mysql8.0

    Mysql8.0.12 基本操作 解释 命令 安装服务端 yum install mysql-community-server 启动 service mysqld start/restart 停止 s ...

  4. Python并发编程之多进程(实战)

    一.multiprocessing和Process multiprocessing提供了支持子进程.通信和数据共享.执行不同形式的同步,提供了Process.Queue.Pipe.Lock等组件 创建 ...

  5. LeetCode(128) Longest Consecutive Sequence

    题目 Given an unsorted array of integers, find the length of the longest consecutive elements sequence ...

  6. centos7 安全配置

    CentOS是最多人用来运行服务器的 Linux 版本,最新版本是 CentOS 7.当你兴趣勃勃地在一台主机或 VPS 上安装 CentOS 7 后,首要的工作肯定是加强它的安全性,以下列出的七件事 ...

  7. UVALive - 8273 Assigning Frequencies (搜索 )

    n个点的一张图,问能否给每个点染上三种颜色中的一种,使得没有相邻的点颜色相同? n <= 35. Sample Input 4 6 6 0 3 1 5 3 2 2 5 0 4 1 0 7 12 ...

  8. 并查集:CDOJ1594-老司机的奇幻漂流 (食物链)

    老司机的奇幻漂流 UESTC - 1594 Problem Description 老司机在救出了女票之后,就和她在全世界旅游,有一天,他们来到了一个神奇的小岛上. 这个小岛上有三种动物,他们互相克制 ...

  9. Liunx将私密代理添加到环境变量

    .bash_profile文件存在于用户主目录下,绝对路径为/home/$name/.bash_profile.bash_profile文件是隐藏文件,里面包含的是用户的用户的环境变量. 注意: 这个 ...

  10. Centos7 install Openstack Juno (RDO) (转载)

    原文地址:http://www.hdume.com/centos-7-0%E5%AE%89%E8%A3%85openstack/ 1.安装系统,Centos7镜像采用CentOS-7.0-1406-x ...