题目链接 https://www.lydsy.com/JudgeOnline/problem.php?id=3309

题意:定义f(n)为n所含质因子的最大幂指数,求 $Ans=\sum _{i=1}^{a}\sum_{j=i}^{b}f(gcd(i,j))$

T<=10000

1<=a,b<=10^7

解析:考虑a<b

枚举最大公约数d,得到:

$$Ans=\sum_{d=1}^a f(d)\sum_{i=1}^{\lfloor\frac{a}{d}\rfloor}\sum_{j=1}^{\lfloor\frac{b}{d}\rfloor}[gcd(i,j)=1]$$

右边就是求$i\in[1,{\lfloor\frac{a}{d}\rfloor}],j\in[1,{\lfloor\frac{b}{d}\rfloor}]$ gcd(i,j)==1 的对数,根据莫比乌斯反演可以得到

$$Ans=\sum_{d=1}^a{f(d)}\sum_{d'=1}^{\lfloor\frac{a}{d}\rfloor}\mu(d'){\lfloor\frac{a}{dd'}\rfloor}{\lfloor\frac{b}{dd'}\rfloor}$$

令 T=dd'

$$Ans=\sum_{T=1}^{a}{\lfloor\frac{a}{T}\rfloor}{\lfloor\frac{b}{T}\rfloor}\sum_{d|T}\mu(\frac{T}{d}){f(d)}$$

左边可以分块求出来,所以右边要预处理出来前缀和,但是nlog(n) 的复杂度会超时,所以要大力分析一波

考虑  $G(n)=\sum_{d|n}\mu(\frac{n}{d}){f(d)}$ ,只有当 n/d是互不相等的素数乘积的形式 才会产生贡献,其余都是0 ,

设 n=p1^q1*p2^q2*p3^q3...pi^qi ,  k=max{qi},  f(d) 的取值只有两种 k 或 k-1

考虑 n/d 的组合情况 令,qi=k 的p集合为 A  剩余p集合为 B  当A集合全部都取时 f(d) = k-1 其余情况f(d) = k 

1.当B不为空的时候 B集合的组合情况是奇数,偶数各占一半的。所以集合A 中的每一种情况与B组合 也是奇偶数量相同,相互抵消了,G(n)=0。

2.当B为空的时候,也就是所有的qi是相同的都等于k,因为只有当A集合全部都取时 f(d) = k-1 ,假设A集合的大小为m,一共有2^m个组合方案:

1)m为奇数时 $\mu(\frac{n}{d})$ 是 负的 ,f(d)= k 的组合方案数就是偶数多一个 G(n)=k-(k-1)=1

2)  m为偶数时 $\mu(\frac{n}{d})$ 是 正的 ,f(d)= k 的组合方案数就是奇数多一个 G(n)=(k-1)-k=-1

总结一下就是:

当n的素因子个数为偶数且素因子的幂次都相等时 G(n)=-1,

当n的素因子个数为奇数且素因子的幂次都相等时 G(n)=-1,

其余G(n)=0。

对于幂次等于1的情况我们可以线性筛求出来G(i),G(i^k) =G(i)  指数级别的增长 O(n) 可以求出来所有的。

AC代码

#include <bits/stdc++.h>
#define pb push_back
#define mp make_pair
#define fi first
#define se second
#define all(a) (a).begin(), (a).end()
#define fillchar(a, x) memset(a, x, sizeof(a))
#define huan printf("\n");
#define debug(a,b) cout<<a<<" "<<b<<" ";
using namespace std;
const int maxn=1e7+,inf=0x3f3f3f3f;
typedef long long ll;
const ll mod = ;
typedef pair<int,int> pii;
int check[maxn],prime[maxn],G[maxn],sum[maxn];
void Mobius(int N)//线性筛求G(i)
{
int pos=;G[]=;
for (int i = ; i <= N ; i++)
{
if (!check[i])
prime[pos++] = i,G[i]=;
for (int j = ; j < pos && i*prime[j] <= N ; j++)
{
check[i*prime[j]] = ;
if (i % prime[j] == )
{
G[i*prime[j]]=;
break;
}
G[i*prime[j]]=-G[i];
}
}
}
int main()
{
Mobius(1e7);
sum[]=sum[]=;
for(int i=;i<=1e7;i++) //求G(i^k)
{
if(G[i]!=)
for(ll j=i;j<=1e7;j*=i)
sum[j]=G[i];
sum[i]+=sum[i-]; //前缀和
}
int t,n,m;
scanf("%d",&t);
while(t--)
{
scanf("%d%d",&n,&m);
if(n>m)swap(n,m);
ll ans=;
for(int i=,j;i<=n;i=j+) // 分块sqrt复杂度求出答案
{
j=min(n/(n/i),m/(m/i));
ans+=1ll*(sum[j]-sum[i-])*(n/i)*(m/i);
}
printf("%lld\n",ans);
}
}

BZOJ 3309 莫比乌斯反演的更多相关文章

  1. 【题解】Crash的数字表格 BZOJ 2154 莫比乌斯反演

    题目传送门 http://www.lydsy.com/JudgeOnline/problem.php?id=2154 人生中第一道自己做出来的莫比乌斯反演 人生中第一篇用LaTeX写数学公式的博客 大 ...

  2. BZOJ 2301 莫比乌斯反演入门

    2301: [HAOI2011]Problem b Description 对于给出的n个询问,每次求有多少个数对(x,y),满足a≤x≤b,c≤y≤d,且gcd(x,y) = k,gcd(x,y)函 ...

  3. bzoj 2154 莫比乌斯反演求lcm的和

    题目大意: 表格中每一个位置(i,j)填的值是lcm(i,j) , 求n*m的表格值有多大 论文贾志鹏线性筛中过程讲的很好 最后的逆元我利用的是欧拉定理求解的 我这个最后线性扫了一遍,勉强过了,效率不 ...

  4. bzoj 2301 莫比乌斯反演

    对于给出的n个询问,每次求有多少个数对(x,y),满足a≤x≤b,c≤y≤d,且gcd(x,y) = k,gcd(x,y)函数为x和y的最大公约数. 这里题目意思很明显 对于要求的f[n] = sig ...

  5. bzoj 1101 莫比乌斯反演

    最裸的莫比乌斯 #include<bits/stdc++.h> #define LL long long #define fi first #define se second #defin ...

  6. bzoj 2820 莫比乌斯反演

    搞了一整个晚自习,只是看懂了dalao们的博客,目前感觉没有思路-.还是要多切题 next day: 刚才又推了一遍,发现顺过来了,hahaha #include<cstdio> #inc ...

  7. BZOJ - 2818 莫比乌斯反演 初步

    要使用分块的技巧 #include<iostream> #include<algorithm> #include<cstdio> #include<cstri ...

  8. bzoj 2671 莫比乌斯反演

    Calc Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 451  Solved: 234[Submit][Status][Discuss] Descr ...

  9. bzoj 2820 / SPOJ PGCD 莫比乌斯反演

    那啥bzoj2818也是一样的,突然想起来好像拿来当周赛的练习题过,用欧拉函数写掉的. 求$(i,j)=prime$对数 \begin{eqnarray*}\sum_{i=1}^{n}\sum_{j= ...

随机推荐

  1. day3- python 注册

    # .先把文件内容的账号密码放到list/字典 f = open('users') result = f.read() f.close() user_list = result.split() # u ...

  2. 小试nginx日志分析xlog

    nginx配置: http { #...其他配置 log_format tpynormal '$remote_addr | [$time_local] | $host | "$request ...

  3. 【linux】【rpm】确定程序是否 rpm 安装

    执行 rpm -qf 文件名如果结果显示出安装包那就说明是rpm (或者yum)安装 详情参看 rpm -v  (或者 man rpm) ​

  4. Git命令大总结(纯手办)

    Git完整命令手册地址:http://git-scm.com/docs PDF版命令手册地址:github-git-cheat-sheet.pdf 1.git config -l查看全局用户信息配置 ...

  5. BZOJ 4369: [IOI2015]teams分组

    把一个人看成二维平面上的一个点,把一个K[i]看成左上角为(0,+max),右下角为(K[i],K[i])的一个矩阵,那么可以很好地描述人对于询问是否合法(我也不知道他怎么想到这东西的) 然后把一组询 ...

  6. Netcore 基础之TagHelper知识

    饮水思源,来自:http://www.cnblogs.com/liontone 的BLOG中关于taghelper中的内容 概要 TagHelper是ASP.NET 5的一个新特性.也许在你还没有听说 ...

  7. luogu3381 【模板】最小费用最大流

    每次选代价最小的流增广 #include <iostream> #include <cstring> #include <cstdio> #include < ...

  8. Baum-Welch算法(EM算法)对HMM模型的训练

    Baum-Welch算法就是EM算法,所以首先给出EM算法的Q函数 \[\sum_zP(Z|Y,\theta')\log P(Y,Z|\theta)\] 换成HMM里面的记号便于理解 \[Q(\lam ...

  9. curl 设置头部

    2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 ...

  10. C++单例模式实例

    定义:在某些情况下,我们设计中的对象只需要一个,比方说:线程池(threadpool).缓存(cache).对话框.处理偏好设置和注册表对象.日志对象.充当打印机.显卡等设备的驱动程序的对象等.事实上 ...