bzoj3209:3209: 花神的数论题
觉得还是数位dp的那种解题形式但是没有认真的想,一下子就看题解。其实还是设置状态转移。一定要多思考啊
f[i][j]=f[i-1][j]+g[i-1][j] g[i][j]=f[i-1][j-1]+g[i-1][j];
然后我就开始gang。然后先是for for j没有从0开始。然后是cnt增加的时候忘了*,接着是1<<tmp没有用ll,还有是读入优化没有用longlong,最后成功的过了若干较小的数据。WAWAWAWAWA5发。最后发现指数不能直接取模!。终于AC了喜极而泣TAT
=>关键是前两个错误思考了好久输出调试了好久渐渐的才知道自己哪里写错了。妈呀以后一遇到数位dp就把过程什么的全都输出一下。。。有关的东西打表出来确认每一步都没有错。。。
=>不过用了两个小时调试收获还是很大的。
#include<cstdio>
#include<cstring>
#include<cctype>
#include<algorithm>
using namespace std;
#define rep(i,s,t) for(int i=s;i<=t;i++)
#define dwn(i,s,t) for(int i=s;i>=t;i--)
#define clr(x,c) memset(x,c,sizeof(x))
#define ll long long
ll read(){ //注意读入不要忘了longlong
ll x=0;char c=getchar();
while(!isdigit(c)) c=getchar();
while(isdigit(c)) x=x*10+c-'0',c=getchar();
return x;
}
const int mod=1e7+7;
const int nmax=65;
ll f[nmax][nmax],g[nmax][nmax];
ll pw(ll a,ll b){
ll ans=1;
while(b){
if(b&1) ans=ans*a%mod;
b>>=1;a=a*a%mod;
}
return ans;
}
ll cal(ll x){//10011
ll tmp,temp,cnt=0,ans=1;
for(tmp=0;(1ll<<tmp)<=x;++tmp);//如果直接1<<tmp会爆
dwn(i,tmp,1){
temp=1ll<<(i-1);
if(x&temp) {
rep(j,1,i-1) ans=ans*pw(j+cnt,f[i][j])%mod;
if(cnt) ans=ans*cnt%mod;++cnt;
}
}
return ans*cnt%mod;
}
int main(){
ll n=read();
f[1][0]=g[1][1]=1;
rep(i,2,60) rep(j,0,i){//指数不能直接取模!!!
f[i][j]=f[i-1][j]+g[i-1][j];
if(j) g[i][j]=f[i-1][j-1]+g[i-1][j-1];
}
printf("%lld\n",cal(n));
return 0;
}
3209: 花神的数论题
Time Limit: 10 Sec Memory Limit: 128 MB
Submit: 1802 Solved: 822
[Submit][Status][Discuss]
Description
背景
众所周知,花神多年来凭借无边的神力狂虐各大 OJ、OI、CF、TC …… 当然也包括 CH 啦。
描述
话说花神这天又来讲课了。课后照例有超级难的神题啦…… 我等蒟蒻又遭殃了。
花神的题目是这样的
设 sum(i) 表示 i 的二进制表示中 1 的个数。给出一个正整数 N ,花神要问你
派(Sum(i)),也就是 sum(1)—sum(N) 的乘积。
Input
一个正整数 N。
Output
一个数,答案模 10000007 的值。
Sample Input
3
Sample Output
2
HINT
对于样例一,1*1*2=2;
数据范围与约定
对于 100% 的数据,N≤10^15
Source
bzoj3209:3209: 花神的数论题的更多相关文章
- BZOJ 3209: 花神的数论题 [数位DP]
3209: 花神的数论题 题意:求\(1到n\le 10^{15}\)二进制1的个数的乘积,取模1e7+7 二进制最多50位,我们统计每种1的个数的数的个数,快速幂再乘起来就行了 裸数位DP..\(f ...
- 【BZOJ3209】花神的数论题 数位DP
[BZOJ3209]花神的数论题 Description 背景众所周知,花神多年来凭借无边的神力狂虐各大 OJ.OI.CF.TC …… 当然也包括 CH 啦.描述话说花神这天又来讲课了.课后照例有超级 ...
- 【bzoj3209】: 花神的数论题 数论-DP
[bzoj3209]: 花神的数论题 首先二进制数中1的个数最多就是64个 设所有<=n的数里二进制中1的个数为i的有a[i]个 那么答案就是 然后快速幂 求a[i]可以用DP 设在二进制中从 ...
- 【BZOJ】3209: 花神的数论题
题目链接:http://www.lydsy.com/JudgeOnline/problem.php?id=3209 显然是按照二进制位进行DP. 考虑预处理$F[i][j]$表示到了二进制的第$i$位 ...
- bzoj 3209 花神的数论题 —— 数位DP
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=3209 算是挺简单的数位DP吧,但还是花了好久才弄明白... 又参考了博客:https://b ...
- bzoj 3209 花神的数论题——二进制下的数位dp
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=3209 可以枚举 “1的个数是...的数有多少个” ,然后就是用组合数算在多少位里选几个1. ...
- [BZOJ 3209]花神的数论题
一道简单的数位 dp 题 但是脑子里只有 __builtin_popcountll 了呢(自重) 看完题解后很快就理解了,而且有一种这么简单的题居然没想到做法真是不应该唉~的感觉 用 f[i] 表示 ...
- [BZOJ 3209] 花神的数论题 【数位统计】
题目链接: BZOJ - 3209 题目大意 设 f(x) 为 x 的二进制表示中 1 的个数.给定 n ,求 ∏ f(i) (1 <= i <= n) . 题目分析 总体思路是枚 ...
- BZOJ 3209 花神的数论题 数位DP+数论
题目大意:令Sum(i)为i在二进制下1的个数 求∏(1<=i<=n)Sum(i) 一道非常easy的数位DP 首先我们打表打出组合数 然后利用数位DP统计出二进制下1的个数为x的数的数量 ...
随机推荐
- PHP中error_reporting()函数的用法(修改PHP屏蔽错误)
一般在默认的普通PHP文件中输出一个未定义声明的变量是不会报错误的,但在codeigniter框架下却要报错误,这对于想集成 添加 和 修改 页面于一体的”懒人”很不方便,由于是初学者开始还想怎么在代 ...
- 汇总各个部门当前员工的title类型的分配数目,结果给出部门编号dept_no、dept_name、其当前员工所有的title以及该类型title对应的数目count
CREATE TABLE `departments` (`dept_no` char(4) NOT NULL,`dept_name` varchar(40) NOT NULL,PRIMARY KEY ...
- nginx 初了解
随着现代web开发的发展,restful,前后端分离,前端js框架的应用越来越普遍.很多web应用请求的接口可能根本就存在于不同的服务器,类似于微信,支付宝等等.这其中就会存在跨域的问题.简单来说,跨 ...
- hdu1693Eat the Trees(插头dp)
传送门 先坑着,等啥时候会了再来填坑 不得不说思路真的是很妙啊 //minamoto #include<iostream> #include<cstdio> #include& ...
- Mysql 的 增删改查
mysql的增删改查 1:新建数据库 create database 数据库名 [其他选项]; 2:新建数据表 create table students ( id int unsigned not ...
- css3椭圆运动
通过使用css3实现让元素椭圆运动.而不是圆形运动. 效果1:http://sandbox.runjs.cn/show/ignefell 效果2:http://runjs.cn/code/w2wxjy ...
- HDU-1150-MachineSchedule(二分图匹配)
链接:https://vjudge.net/problem/HDU-1150#author=0 题意: 在一个工厂,有两台机器A,B生产产品.A机器有n种工作模式(模式0,模式1....模式n-1). ...
- 2017ACM/ICPC广西邀请赛 A Math Problem
解法:发现..最多15个,那么..暴力一下啦 #include <iostream> #include <stdio.h> #include <vector> #i ...
- codeforces540E-树状数组求逆序对
1-1e9的数据范围 但有1e5个区间 所以可以考虑把没有涉及到的区间缩成一个点 然后树状数组求逆序对 #include<bits/stdc++.h> #define inf 0x3f3f ...
- Nginx中的Rewrite的重定向配置与实践
阅读目录 一:理解地址重写 与 地址转发的含义. 二:理解 Rewrite指令 使用 三:理解if指令 四:理解防盗链及nginx配置 简介:Rewrite是Nginx服务器提供的一个重要的功能, ...