[论文理解] MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications
MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications
Intro
MobileNet 我已经使用过tensorflow的api在实际场景中取得了很实时的识别效果,其论文的贡献是利用depth-wise卷积和point-wise卷积对一般的卷积核进行优化,使得网络模型的卷积计算量大大减小。这一贡献使得Mobile-Net能够在移动设备上顺利运行,并且取得不错的速度和精度。

Depthwise Separable Convolution
对于标准的卷积而言,假设输入的是DF*DF*M的feature map F,并且生成DG*DG*N的feature map G,使用N个DK*DK*M的kernel去卷积,其对应关系为(步长为1):

total 计算量如下:

举例子说明标准的卷积过程和计算量:
取输入为7*7*3的feature map,卷积核3*3*3,那么需要不考虑padding的情况下滑动的次数就是5*5次,最后三个通道的对应数据加和压缩到一个通道,即完成卷积过程。我们假设有128个卷积核卷积输入图像(即输出通道数是128),那么我们的乘法计算量就是如图所示的86400次。

depth-wise和point-wise卷积的方式是先只用一个3*3的卷积核去卷积原图像,然后再用1*1*3的卷积核去卷积第一次卷积的结果,这样将原来的128次3*3的卷积拆分成了两次卷积,即两次卷积的加和,很明显这个加法比前面的直接相乘的计算量大大减小,这也是mobile-net计算量大大减小的原因。

同样上面的例子,用Depthwise Separable Convolution之后的过程如下图所示,计算量仅仅10275,为标准卷积的12%!

Network Structure and Training
下图是标准卷积和depth-wise卷积的对应关系。

mobile-net的网络结构和参数情况如下图:

dw是depth-wise卷积的简称。
之后作者又提出模型可以再减少计算量,通过引入参数α,即减少dw过程中参与计算的输入通道数量和输出通道数量,引入之后计算量如图所示。

然后,又加了一个超参ρ,作用也是减少计算量,作用在输入feature map的size上。

Conclusion
mobile-net提出的Depthwise Separable Convolution使得深度模型的计算量大大减小,但其减少计算量的同时其实也失去了一定的精度,比如,对于较小模型而言,如果采用这种计算,那么模型的能力可能会下降,这样得到的模型肯定不是最好的,减少了模型的参数数量,很可能使得模型得不到最好的拟合效果。
[论文理解] MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications的更多相关文章
- 论文笔记——MobileNets(Efficient Convolutional Neural Networks for Mobile Vision Applications)
论文地址:MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications MobileNet由Go ...
- [论文阅读] MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications (MobileNet)
论文地址:MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications 本文提出的模型叫Mobi ...
- 【论文翻译】MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications
MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications 论文链接:https://arxi ...
- 深度学习论文翻译解析(十七):MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications
论文标题:MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications 论文作者:Andrew ...
- 【网络结构】MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications论文解析
目录 0. Paper link 1. Overview 2. Depthwise Separable Convolution 2.1 architecture 2.2 computational c ...
- Paper | MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications
目录 1. 故事 2. MobileNet 2.1 深度可分离卷积 2.2 网络结构 2.3 引入两个超参数 3. 实验 本文提出了一种轻量级结构MobileNets.其基础是深度可分离卷积操作. M ...
- MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications
1. 摘要 作者提出了一系列应用于移动和嵌入式视觉的称之为 MobileNets 的高效模型,这些模型采用深度可分离卷积来构建轻量级网络. 作者还引入了两个简单的全局超参数来有效地权衡时延和准确率,以 ...
- 【MobileNet-V1】-2017-CVPR-MobileNets Efficient Convolutional Neural Networks for Mobile Vision Applications-论文阅读
2017-CVPR-MobileNets Efficient Convolutional Neural Networks for Mobile Vision Applications Andrew H ...
- 深度学习论文翻译解析(六):MobileNets:Efficient Convolutional Neural Networks for Mobile Vision Appliications
论文标题:MobileNets:Efficient Convolutional Neural Networks for Mobile Vision Appliications 论文作者:Andrew ...
随机推荐
- QDUOJ ycb的ACM进阶之路 二进制多重背包
ycb的ACM进阶之路 发布时间: 2017年5月22日 14:30 最后更新: 2017年5月22日 14:31 时间限制: 1000ms 内存限制: 128M 描述 ycb是个天资聪颖 ...
- HDU - 1176 免费馅饼 DP多种状态转移
免费馅饼 都说天上不会掉馅饼,但有一天gameboy正走在回家的小径上,忽然天上掉下大把大把的馅饼.说来gameboy的人品实在是太好了,这馅饼别处都不掉,就掉落在他身旁的10米范围内.馅饼如果掉在了 ...
- Linux系统下使用split命令分割大文件 (转载)
原创作品,允许转载,转载时请务必以超链接形式标明文章 原始出处 .作者信息和本声明.否则将追究法律责任.http://snailwarrior.blog.51cto.com/680306/140531 ...
- Fedora/CentOS使用技巧
命令 获取系统安装包的编译源码及脚本 # dnf download --source package # yumdownloader --source virt-viewer 远程连接windows ...
- 动画重定向技术分析和Unity中的应用
http://www.jianshu.com/p/6e9ba1b9c99e 因为一些手游项目需要使用Unity引擎,但在动画部分需要使用重定向技术来实现动画复用,考虑到有些项目开发人员没有过这方面的经 ...
- AC自动机板子(from. qwer)
#include <cstdio> #include <cstring> #include <cstdlib> #include <algorithm> ...
- js的Element.scrollIntoView的学习
1.Element.scrollIntoView() 该方法让当前元素滚动到浏览器窗口的可是区域内: 2.语法: element.scrollIntoView();//等同于element.sc ...
- 不使用三方包时,如何在ThinkSNS中建立优雅的用户权限管理
什么是ThinkSNS ? ThinkSNS(简称TS),一款全平台综合性社交系统,为国内外大中小企业和创业者提供社会化软件研发及技术解决方案,目前最新版本为ThinkSNS+(简称TS+).Thin ...
- selenium基础操作
selenium 1.打开和关闭网页 #!/usr/bin/env python # -*- coding:utf-8 -*- from selenium import webdriver drive ...
- Codeforces #564div2 C(模拟)
要点 没想到的一点是,对于堆里的某牌,最好情况是它出来时后边都准备就绪了,答案是\(p[i] + (n - i + 1)\),所有的这个取最大的即可 一发结束的情况先特判一下 const int ma ...