Codeforces 323C Two permutations
题目描述
You are given two permutations pp and qq , consisting of nn elements, and mm queries of the form: l_{1},r_{1},l_{2},r_{2}l1,r1,l2,r2 $ (l_{1}<=r_{1}; l_{2}<=r_{2}) $ . The response for the query is the number of such integers from 11 to nn , that their position in the first permutation is in segment [l_{1},r_{1}][l1,r1] (borders included), and position in the second permutation is in segment [l_{2},r_{2}][l2,r2](borders included too).
A permutation of nn elements is the sequence of nn distinct integers, each not less than 11 and not greater than nn .
Position of number vv (1<=v<=n)(1<=v<=n) in permutation g_{1},g_{2},...,g_{n}g1,g2,...,gn is such number ii , that g_{i}=vgi=v .
输入输出格式
输入格式:
The first line contains one integer n\ (1<=n<=10^{6})n (1<=n<=106) , the number of elements in both permutations. The following line contains nn integers, separated with spaces: p_{1},p_{2},...,p_{n}\ (1<=p_{i}<=n)p1,p2,...,pn (1<=pi<=n) . These are elements of the first permutation. The next line contains the second permutation q_{1},q_{2},...,q_{n}q1,q2,...,qn in same format.
The following line contains an integer m\ (1<=m<=2·10^{5})m (1<=m<=2⋅105) , that is the number of queries.
The following mm lines contain descriptions of queries one in a line. The description of the ii -th query consists of four integers: a,b,c,d\ (1<=a,b,c,d<=n)a,b,c,d (1<=a,b,c,d<=n) . Query parameters l_{1},r_{1},l_{2},r_{2}l1,r1,l2,r2 are obtained from the numbers a,b,c,da,b,c,dusing the following algorithm:
- Introduce variable xx . If it is the first query, then the variable equals 00 , else it equals the response for the previous query plus one.
- Introduce function f(z)=((z-1+x)\ mod\ n)+1f(z)=((z−1+x) mod n)+1 .
- Suppose l_{1}=min(f(a),f(b)),r_{1}=max(f(a),f(b)),l_{2}=min(f(c),f(d)),r_{2}=max(f(c),f(d))l1=min(f(a),f(b)),r1=max(f(a),f(b)),l2=min(f(c),f(d)),r2=max(f(c),f(d)) .
输出格式:
Print a response for each query in a separate line.
输入输出样例
3
3 1 2
3 2 1
1
1 2 3 3
1
4
4 3 2 1
2 3 4 1
3
1 2 3 4
1 3 2 1
1 4 2 3
1
1
2 把第二个排列的数在第一个排列中对应的位置记一下,主席树跑一跑就行了。
#include<iostream>
#include<cstdio>
#include<cstdlib>
#include<cmath>
#include<algorithm>
#include<cstring>
#define ll long long
#define maxn 1000005
using namespace std;
struct node{
node *lc,*rc;
int s;
}nil[maxn*30],*rot[maxn],*cnt;
int a[maxn],n,ky,num[maxn];
int m,le,ri,k,preans=-1,ple,pri;
char ch; inline int add(int x,int y,const int ha){
return (x+y)%ha;
} node *update(node *u,int l,int r){
node *ret=++cnt;
*ret=*u;
ret->s++; if(l==r) return ret; int mid=l+r>>1;
if(le<=mid) ret->lc=update(ret->lc,l,mid);
else ret->rc=update(ret->rc,mid+1,r); return ret;
} int query(node *u,node *v,int l,int r){
if(l>=le&&r<=ri) return v->s-u->s; int mid=l+r>>1,an=0;
if(le<=mid) an+=query(u->lc,v->lc,l,mid);
if(ri>mid) an+=query(u->rc,v->rc,mid+1,r);
return an;
} inline void prework(){
cnt=rot[0]=nil->lc=nil->rc=nil;
nil->s=0; for(int i=1;i<=n;i++){
le=a[i];
rot[i]=update(rot[i-1],1,n);
}
} inline void solve(){
scanf("%d",&m);
while(m--){
scanf("%d%d%d%d",&le,&ri,&ple,&pri); le=add(le,preans,n)+1;
ri=add(ri,preans,n)+1;
ple=add(ple,preans,n)+1;
pri=add(pri,preans,n)+1;
if(le>ri) swap(le,ri);
if(ple>pri) swap(ple,pri); preans=query(rot[ple-1],rot[pri],1,n);
printf("%d\n",preans);
}
} int main(){
scanf("%d",&n);
int now;
for(int i=1;i<=n;i++){
scanf("%d",&now);
num[now]=i;
}
for(int i=1;i<=n;i++){
scanf("%d",&now);
a[i]=num[now];
} prework();
solve(); return 0;
}
Codeforces 323C Two permutations的更多相关文章
- Codeforces 1089I - Interval-Free Permutations(析合树计数)
Codeforces 题面传送门 & 洛谷题面传送门 首先题目中涉及排列的 interval,因此可以想到析合树.由于本蒟蒻太菜了以至于没有听过这种神仙黑科技,因此简单介绍一下这种数据结构:我 ...
- codeforces Gargari and Permutations(DAG+BFS)
/* 题意:求出多个全排列的lcs! 思路:因为是全排列,所以每一行的每一个数字都不会重复,所以如果有每一个全排列的数字 i 都在数字 j的前面,那么i, j建立一条有向边! 最后用bfs遍历整个图, ...
- Codeforces 382 D Permutations
题目大意: 给出一张二分图,这张二分图完美匹配的个数是奇数,求删掉第$i(1<=i<=m)$条边后完美匹配个数的奇偶性. 设这张图的邻接矩阵为$A$,那么完美匹配的个数为$A$的积和式,即 ...
- CodeForces - 296A-Yaroslav and Permutations(思维)
Yaroslav has an array that consists of n integers. In one second Yaroslav can swap two neighboring a ...
- Codeforces Round #485 (Div. 2) E. Petr and Permutations
Codeforces Round #485 (Div. 2) E. Petr and Permutations 题目连接: http://codeforces.com/contest/987/prob ...
- Codeforces 285 E. Positions in Permutations
\(>Codeforces \space 285 E. Positions in Permutations<\) 题目大意 : 定义一个长度为 \(n\) 的排列中第 \(i\) 个元素是 ...
- Codeforces Round #198 (Div. 2) E. Iahub and Permutations —— 容斥原理
题目链接:http://codeforces.com/contest/340/problem/E E. Iahub and Permutations time limit per test 1 sec ...
- 贪心 CodeForces 124B Permutations
题目传送门 /* 贪心:全排列函数使用,更新最值 */ #include <cstdio> #include <algorithm> #include <cstring& ...
- Codeforces Round #337 Alphabet Permutations
E. Alphabet Permutations time limit per test: 1 second memory limit per test: 512 megabytes input: ...
随机推荐
- Java程序占用实际内存大小
很多人错误的认为运行Java程序时使用-Xmx和-Xms参数指定的就是程序将会占用的内存,但是这实际上只是Java堆对象将会占用的内存.堆只是影响Java程序占用内存数量的一个因素.要更好的理解你的J ...
- 虚拟架构就绪 | 谈谈Windows Server 2012 R2迁移这件小事
我们所说的“新选择”包括操作系统升级——告别Windows Server 2003或2008,选择用什么样的姿势进行升级呢? 新年伊始,正是企业对自身IT基础设施进行评估的最佳时期.在多项评估项目里面 ...
- 设计模式之第20章-访问者模式(Java实现)
设计模式之第20章-访问者模式(Java实现) “嘿,你脸好红啊.”“精神焕发.”“怎么又黄了?”“怕冷,涂的,涂的,蜡.”“身上还有酒味,露馅了吧,原来是喝酒喝的啊.”“嘿嘿,让,让你发现了,今天来 ...
- HDU5726 GCD
Give you a sequence of N(N≤100,000)N(N≤100,000) integers : a1,...,an(0<ai≤1000,000,000)a1,...,an( ...
- windows下命令行
创建文件夹 mkdir 文件夹名字 创建文件 echo >文件名字 输入文件内容
- Spring MVC请求到处理方法注解配置的几种方式
@RequestMapping 这个是最常用的注解,可以配置在类上,也可以配置在方法上,两个一起作用组成方法能够响应的请求路径,举例如下 package org.zln.myWeb.controlle ...
- Log4j官方文档翻译(七、日志格式化)
apache log4j提供各种layout对象,然后根据自己指定的layouts对象转化日志信息.通常来说都是应用量身定制layout对象转换信息格式. 所有的layout对象从Appender对象 ...
- 文本文件txt生成excel
using System; using System.Collections.Generic; using System.Linq; using System.Text; using System.I ...
- css 文字垂直居中问题
CSS 文字垂直居中问题 问题:在 div 中文字居中问题: 当使用 line-height:100%%; 时,文字没有居中,如下: html: <div id="header_log ...
- 将npm改成默认使用cnpm下载
淘宝的cnpm下载安装的命令为 npm install -g cnpm --registry=https://registry.npm.taobao.org 但是仅仅这样是不够的,这样只有主动去下载资 ...