Codeforces 323C Two permutations
题目描述
You are given two permutations pp and qq , consisting of nn elements, and mm queries of the form: l_{1},r_{1},l_{2},r_{2}l1,r1,l2,r2 $ (l_{1}<=r_{1}; l_{2}<=r_{2}) $ . The response for the query is the number of such integers from 11 to nn , that their position in the first permutation is in segment [l_{1},r_{1}][l1,r1] (borders included), and position in the second permutation is in segment [l_{2},r_{2}][l2,r2](borders included too).
A permutation of nn elements is the sequence of nn distinct integers, each not less than 11 and not greater than nn .
Position of number vv (1<=v<=n)(1<=v<=n) in permutation g_{1},g_{2},...,g_{n}g1,g2,...,gn is such number ii , that g_{i}=vgi=v .
输入输出格式
输入格式:
The first line contains one integer n\ (1<=n<=10^{6})n (1<=n<=106) , the number of elements in both permutations. The following line contains nn integers, separated with spaces: p_{1},p_{2},...,p_{n}\ (1<=p_{i}<=n)p1,p2,...,pn (1<=pi<=n) . These are elements of the first permutation. The next line contains the second permutation q_{1},q_{2},...,q_{n}q1,q2,...,qn in same format.
The following line contains an integer m\ (1<=m<=2·10^{5})m (1<=m<=2⋅105) , that is the number of queries.
The following mm lines contain descriptions of queries one in a line. The description of the ii -th query consists of four integers: a,b,c,d\ (1<=a,b,c,d<=n)a,b,c,d (1<=a,b,c,d<=n) . Query parameters l_{1},r_{1},l_{2},r_{2}l1,r1,l2,r2 are obtained from the numbers a,b,c,da,b,c,dusing the following algorithm:
- Introduce variable xx . If it is the first query, then the variable equals 00 , else it equals the response for the previous query plus one.
- Introduce function f(z)=((z-1+x)\ mod\ n)+1f(z)=((z−1+x) mod n)+1 .
- Suppose l_{1}=min(f(a),f(b)),r_{1}=max(f(a),f(b)),l_{2}=min(f(c),f(d)),r_{2}=max(f(c),f(d))l1=min(f(a),f(b)),r1=max(f(a),f(b)),l2=min(f(c),f(d)),r2=max(f(c),f(d)) .
输出格式:
Print a response for each query in a separate line.
输入输出样例
3
3 1 2
3 2 1
1
1 2 3 3
1
4
4 3 2 1
2 3 4 1
3
1 2 3 4
1 3 2 1
1 4 2 3
1
1
2 把第二个排列的数在第一个排列中对应的位置记一下,主席树跑一跑就行了。
#include<iostream>
#include<cstdio>
#include<cstdlib>
#include<cmath>
#include<algorithm>
#include<cstring>
#define ll long long
#define maxn 1000005
using namespace std;
struct node{
node *lc,*rc;
int s;
}nil[maxn*30],*rot[maxn],*cnt;
int a[maxn],n,ky,num[maxn];
int m,le,ri,k,preans=-1,ple,pri;
char ch; inline int add(int x,int y,const int ha){
return (x+y)%ha;
} node *update(node *u,int l,int r){
node *ret=++cnt;
*ret=*u;
ret->s++; if(l==r) return ret; int mid=l+r>>1;
if(le<=mid) ret->lc=update(ret->lc,l,mid);
else ret->rc=update(ret->rc,mid+1,r); return ret;
} int query(node *u,node *v,int l,int r){
if(l>=le&&r<=ri) return v->s-u->s; int mid=l+r>>1,an=0;
if(le<=mid) an+=query(u->lc,v->lc,l,mid);
if(ri>mid) an+=query(u->rc,v->rc,mid+1,r);
return an;
} inline void prework(){
cnt=rot[0]=nil->lc=nil->rc=nil;
nil->s=0; for(int i=1;i<=n;i++){
le=a[i];
rot[i]=update(rot[i-1],1,n);
}
} inline void solve(){
scanf("%d",&m);
while(m--){
scanf("%d%d%d%d",&le,&ri,&ple,&pri); le=add(le,preans,n)+1;
ri=add(ri,preans,n)+1;
ple=add(ple,preans,n)+1;
pri=add(pri,preans,n)+1;
if(le>ri) swap(le,ri);
if(ple>pri) swap(ple,pri); preans=query(rot[ple-1],rot[pri],1,n);
printf("%d\n",preans);
}
} int main(){
scanf("%d",&n);
int now;
for(int i=1;i<=n;i++){
scanf("%d",&now);
num[now]=i;
}
for(int i=1;i<=n;i++){
scanf("%d",&now);
a[i]=num[now];
} prework();
solve(); return 0;
}
Codeforces 323C Two permutations的更多相关文章
- Codeforces 1089I - Interval-Free Permutations(析合树计数)
Codeforces 题面传送门 & 洛谷题面传送门 首先题目中涉及排列的 interval,因此可以想到析合树.由于本蒟蒻太菜了以至于没有听过这种神仙黑科技,因此简单介绍一下这种数据结构:我 ...
- codeforces Gargari and Permutations(DAG+BFS)
/* 题意:求出多个全排列的lcs! 思路:因为是全排列,所以每一行的每一个数字都不会重复,所以如果有每一个全排列的数字 i 都在数字 j的前面,那么i, j建立一条有向边! 最后用bfs遍历整个图, ...
- Codeforces 382 D Permutations
题目大意: 给出一张二分图,这张二分图完美匹配的个数是奇数,求删掉第$i(1<=i<=m)$条边后完美匹配个数的奇偶性. 设这张图的邻接矩阵为$A$,那么完美匹配的个数为$A$的积和式,即 ...
- CodeForces - 296A-Yaroslav and Permutations(思维)
Yaroslav has an array that consists of n integers. In one second Yaroslav can swap two neighboring a ...
- Codeforces Round #485 (Div. 2) E. Petr and Permutations
Codeforces Round #485 (Div. 2) E. Petr and Permutations 题目连接: http://codeforces.com/contest/987/prob ...
- Codeforces 285 E. Positions in Permutations
\(>Codeforces \space 285 E. Positions in Permutations<\) 题目大意 : 定义一个长度为 \(n\) 的排列中第 \(i\) 个元素是 ...
- Codeforces Round #198 (Div. 2) E. Iahub and Permutations —— 容斥原理
题目链接:http://codeforces.com/contest/340/problem/E E. Iahub and Permutations time limit per test 1 sec ...
- 贪心 CodeForces 124B Permutations
题目传送门 /* 贪心:全排列函数使用,更新最值 */ #include <cstdio> #include <algorithm> #include <cstring& ...
- Codeforces Round #337 Alphabet Permutations
E. Alphabet Permutations time limit per test: 1 second memory limit per test: 512 megabytes input: ...
随机推荐
- {{}},ng-bind和ng-model的区别
ng-bind 与ng-model区别 <input ng-model="object.xxx"> <span ng-bind="object.xxx& ...
- Python框架之Django学习笔记(十七)
Django框架之表单(续二) 今天的这篇博客将是Django学习笔记博客的最后一篇,基本每周最少一篇的Django框架学习,坚持到今天也实属不易,当然了,这个框架的学习仅仅是Django框架的基础部 ...
- python深浅拷贝以及数据在内存中储存方法
要搞懂深浅拷贝,首先要明白数据在内存里的储存方法. 一个变量的储存,首先是变量名加上储存内容的ID,通过ID去找到变量名所对应的内容, 当我们对数据进行赋值时,其实是把内容的整体地址赋给别的变量名(相 ...
- Leetcode 587.安装栅栏
安装栅栏 在一个二维的花园中,有一些用 (x, y) 坐标表示的树.由于安装费用十分昂贵,你的任务是先用最短的绳子围起所有的树.只有当所有的树都被绳子包围时,花园才能围好栅栏.你需要找到正好位于栅栏边 ...
- PAT1024
科学计数法是科学家用来表示很大或很小的数字的一种方便的方法,其满足正则表达式[+-][1-9]"."[0-9]+E[+-][0-9]+,即数字的整数部分只有1位,小数部分至少有1位 ...
- A.Equals(B)和A==B的区别
Equals 和 == 都是用于比较. 如果a和b都是值类型,则a.Equals(b) 和 a == b 结果相同,但是在引用类型是它们的行为是不同的: string a = new string(n ...
- hihoCoder [Offer收割]编程练习赛83 D 生成树问题
题目 从 Kruskal 算法的角度来思考这个问题. 考虑 $n$ 个点的"空图"(即没有边的图). 先将 $m_2$ 条无权值的边加到图中,得到一个森林. 按边权从小到大的顺序枚 ...
- [HNOI2008][bzoj1009] GT考试 [KMP+矩阵快速幂]
题面 传送门 思路 首先,如果$n$和$m$没有那么大的话,有一个非常显然的dp做法: 设$dp[i][j]$表示长度为i的字符串,最后j个可以匹配模板串前j位的情况数 那么显然,答案就是$\sum_ ...
- 洛谷P3803 【模板】多项式乘法(FFT) 【fft】
题目 这是一道FFT模板题 输入格式 给定一个n次多项式F(x),和一个m次多项式G(x). 请求出F(x)和G(x)的卷积. 输出格式 第一行2个正整数n,m. 接下来一行n+1个数字,从低到高表示 ...
- 如何理解显示卡的驱动模块(DDX,DRM,DRI,XVMC)
如何理解显示卡的驱动模块(DDX,DRM,DRI,XVMC) 1)DDX是什么 DDX是X服务器的2D驱动模块,例如via_drv.so. 2D的显示加速,包括xvideo也是由它负责. 它会初始化硬 ...