题目背景

在双人对决的竞技性比赛,如乒乓球、羽毛球、国际象棋中,最常见的赛制是淘汰赛和循环赛。前者的特点是比赛场数少,每场都紧张刺激,但偶然性较高。后者的特点是较为公平,偶然性较低,但比赛过程往往十分冗长。

本题中介绍的瑞士轮赛制,因最早使用于1895年在瑞士举办的国际象棋比赛而得名。它可以看作是淘汰赛与循环赛的折衷,既保证了比赛的稳定性,又能使赛程不至于过长。

题目描述

2*N 名编号为 1~2N 的选手共进行R 轮比赛。每轮比赛开始前,以及所有比赛结束后,都会按照总分从高到低对选手进行一次排名。选手的总分为第一轮开始前的初始分数加上已参加过的所有比赛的得分和。总分相同的,约定编号较小的选手排名靠前。

每轮比赛的对阵安排与该轮比赛开始前的排名有关:第1 名和第2 名、第 3 名和第 4名、……、第2K – 1 名和第 2K名、…… 、第2N – 1 名和第2N名,各进行一场比赛。每场比赛胜者得1 分,负者得 0 分。也就是说除了首轮以外,其它轮比赛的安排均不能事先确定,而是要取决于选手在之前比赛中的表现。

现给定每个选手的初始分数及其实力值,试计算在R 轮比赛过后,排名第 Q 的选手编号是多少。我们假设选手的实力值两两不同,且每场比赛中实力值较高的总能获胜。

输入输出格式

输入格式:

输入文件名为swiss.in 。

输入的第一行是三个正整数N、R 、Q,每两个数之间用一个空格隔开,表示有 2*N 名选手、R 轮比赛,以及我们关心的名次 Q。

第二行是2*N 个非负整数s1, s2, …, s2N,每两个数之间用一个空格隔开,其中 si 表示编号为i 的选手的初始分数。 第三行是2*N 个正整数w1 , w2 , …, w2N,每两个数之间用一个空格隔开,其中 wi 表示编号为i 的选手的实力值。

输出格式:

输出文件名为swiss.out。

输出只有一行,包含一个整数,即R 轮比赛结束后,排名第 Q 的选手的编号。

输入输出样例

输入样例#1:

2 4 2
7 6 6 7
10 5 20 15
输出样例#1:

1

说明

【样例解释】

【数据范围】

对于30% 的数据,1 ≤ N ≤ 100;

对于50% 的数据,1 ≤ N ≤ 10,000 ;

对于100%的数据,1 ≤ N ≤ 100,000,1 ≤ R ≤ 50,1 ≤ Q ≤ 2N,0 ≤ s1, s2, …, s2N≤10^8,1 ≤w1, w2 , …, w2N≤ 10^8。

noip2011普及组第3题。

归并排序 二路归并

本菜鸡一直认为归并排序没用。。这道题让我怀疑人生。

屠龙宝刀点击就送

#include <algorithm>
#include <cstdio>
struct node
{
int num,s,w;
bool operator<(node a)const
{
if(s==a.s) return num<a.num;
else return s>a.s;
}
}xs[],win[],los[];
int n,r,q;
void merge_sort(int l,int r)
{
for(int i=,j=,k=;k<n*;++k)
{
if(i<r&&j<r)
{
if(win[i].s<los[j].s) xs[k]=los[j++];
else if(win[i].s>los[j].s) xs[k]=win[i++];
else if(win[i].s==los[j].s&&win[i].num<los[j].num) xs[k]=win[i++];
else if(win[i].s==los[j].s&&win[i].num>los[j].num) xs[k]=los[j++];
}
else if(i<r&&j>=r) xs[k]=win[i++];
else if(i>=r&&j<r) xs[k]=los[j++];
}
}
int main()
{
scanf("%d%d%d",&n,&r,&q);
for(int i=;i<n*;++i)
{
scanf("%d",&xs[i].s);
xs[i].num=i+;
}
for(int i=;i<n*;++i) scanf("%d",&xs[i].w);
std::sort(xs,xs+n*);
for(;r--;)
{
for(int i=;i<n;++i)
{
int a=xs[i*].w,b=xs[i*+].w;
if(a>b)
{
win[i]=xs[i*];
los[i]=xs[i*+];
win[i].s++;
}
else if(a<b)
{
win[i]=xs[i*+];
los[i]=xs[i*];
win[i].s++;
}
}
merge_sort(,n);
}
printf("%d\n",xs[q-].num);
return ;
}

洛谷 P1309 瑞士轮的更多相关文章

  1. 洛谷P1309 瑞士轮(归并排序)

    To 洛谷.1309 瑞士轮 题目背景 在双人对决的竞技性比赛,如乒乓球.羽毛球.国际象棋中,最常见的赛制是淘汰赛和循环赛.前者的特点是比赛场数少,每场都紧张刺激,但偶然性较高.后者的特点是较为公平, ...

  2. 洛谷 P1309 瑞士轮 解题报告

    P1309 瑞士轮 题目背景 在双人对决的竞技性比赛,如乒乓球.羽毛球.国际象棋中,最常见的赛制是淘汰赛和循环赛.前者的特点是比赛场数少,每场都紧张刺激,但偶然性较高.后者的特点是较为公平,偶然性较低 ...

  3. NOIP2011 普及组 T3 洛谷P1309 瑞士轮

    今天题做太少,放道小题凑数233 题目背景 在双人对决的竞技性比赛,如乒乓球.羽毛球.国际象棋中,最常见的赛制是淘汰赛和循环赛.前者的特点是比赛场数少,每场都紧张刺激,但偶然性较高.后者的特点是较为公 ...

  4. 洛谷P1309——瑞士轮(归并排序)

    https://www.luogu.org/problem/show?pid=1309#sub 题目背景 在双人对决的竞技性比赛,如乒乓球.羽毛球.国际象棋中,最常见的赛制是淘汰赛和循环赛.前者的特点 ...

  5. 洛谷P1309 瑞士轮

    传送门 题目大意: 2*n个人,有初始的比赛分数和实力值. 每次比赛前总分从大到小排序,总分相同编号小的排在前面. 每次比赛是1和2比,3和4比,5和6比. 实力值大的获胜得1分. 每次比赛前排序确定 ...

  6. 洛谷 - P1309 - 瑞士轮 - 归并排序

    https://www.luogu.org/problemnew/show/P1309 一开始写的直接快排没想到真的TLE了. 想到每次比赛每个人前移的量不会很多,但是不知从哪里开始优化. 搜索一下原 ...

  7. 洛谷 P1309 瑞士轮 题解

    每日一题 day4 打卡 Analysis 暴力+快排(其实是归并排序) 一开始天真的以为sort能过,结果光荣TLE,由于每次只更改相邻的元素,于是善于处理随机数的快排就会浪费很多时间.于是就想到归 ...

  8. 洛谷P1309 瑞士轮——题解

    题目传送 思路非常简单,只要开始时把结构体排个序,每次给赢的加分再排序,共r次,最后再输出分数第q大的就行了. (天真的我估错时间复杂度用每次用sort暴力排序结果60分...)实际上这道题估算时间复 ...

  9. P1309 瑞士轮 (吸氧了)

    P1309 瑞士轮 题解 1.这题可以模拟一下 2.sort吸氧可以过(可能是排序有点慢吧,不开会T) sort排序时注意: return 1 是满足条件,不交换 return 0是不满足,交换 代码 ...

随机推荐

  1. glance image-create

    glance image-create

  2. 华为codecraft2018总结

    华为codecraft2018总结 想来也是参加了第二次了,自己还是那么的菜.总结下今年的比赛,得奖是不存在的了,但是收获还是有的. 代码相关的都在这里了:https://github.com/hui ...

  3. 2.3 Hive的数据类型讲解及实际项目中如何使用python脚本对数据进行ETL

    一.hive Data Types https://cwiki. apache. org/confluence/display/HiveLanguageManual+Types Numeric Typ ...

  4. 宝塔Linux 8888 进不去

    一.前言 导致该问题的原因是 Python 版本问题,可能是您更新了 python 的问题.参考宝塔问题的解决方案做的小结.仅供自己做笔记,不作其他用途. 二.解决方案 1.进入shell 命令行,输 ...

  5. 使用Try.NET创建可交互.NET文档

    原文地址:Create Interactive .NET Documentation with Try .NET 原文作者:Maria 译文地址:https://www.cnblogs.com/lwq ...

  6. 51nod1181【素数筛】

    思路: 直接就是筛出素数,然后我很撒比的从那个地方往后for找一个位置也是质数的输出: #include <bits/stdc++.h> using namespace std; type ...

  7. CodeForces 665B 【水-暴力】

    题意(来自网络): 现在有k件商品,每个商品的位置已经告诉你了 现在有n个人,每个人有m个需求,每个需求就是要把第a[i][j]个物品拿到第一个位置来 他的代价是pos[a[i][j]] 问你所有代价 ...

  8. OPENGL_变换与坐标系

    参考:http://blog.csdn.net/kandyer/article/details/12449973 坐标系 世界坐标系:绝对坐标 物体坐标系:以物体自身为原点的坐标系 摄像机坐标系:以摄 ...

  9. 洛谷P1919 【模板】A*B Problem升级版(FFT)

    传送门 话说FFT该不会真的只能用来做这种板子吧…… 我们把两个数字的每一位都看作多项式的系数 然后这就是一个多项式乘法 上FFT就好了 然后去掉前导零 (然而连FFT的板子都背不来orz,而且空间又 ...

  10. [题解](折半搜索/高斯消元枚举自由元)BZOJ_1770_Lights

    状压,时间空间都不行,如果每次搜索一半就可以省下很多空间,用map记下每种状态的答案,最后再把两次的答案合并 然而正解是高斯消元解异或方程组,最后搜索自由元 #include<iostream& ...