排序算法 Java实现版
8种排序之间的关系:
1、 直接插入排序
(1)基本思想:
在要排序的一组数中,假设前面(n-1)[n>=2] 个数已经是排好顺序的,现在要把第n个数插到前面的有序数中,使得这n个数也是排好顺序的。如此反复循环,直到全部排好顺序。
(2)实例
动画

(3)用java实现
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
|
package com.njue; public class insertSort {public insertSort(){ inta[]={49,38,65,97,76,13,27,49,78,34,12,64,5,4,62,99,98,54,56,17,18,23,34,15,35,25,53,51}; int temp=0; for(int i=1;i<a.length;i++){ int j=i-1; temp=a[i]; for(;j>=0&&temp<a[j];j--){ a[j+1]=a[j]; //将大于temp的值整体后移一个单位 } a[j+1]=temp; } for(int i=0;i<a.length;i++) System.out.println(a[i]);}} |
2、希尔排序(最小增量排序)
(1)基本思想:
算法先将要排序的一组数按某个增量d(n/2,n为要排序数的个数)分成若干组,每组中记录的下标相差d.对每组中全部元素进行直接插入排序,然后再用一个较小的增量(d/2)对它进行分组,在每组中再进行直接插入排序。当增量减到1时,进行直接插入排序后,排序完成。
(2)实例:
(3)用java实现
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
|
public class shellSort {public shellSort(){ int a[]={1,54,6,3,78,34,12,45,56,100}; double d1=a.length; int temp=0; while(true){ d1= Math.ceil(d1/2); int d=(int) d1; for(int x=0;x<d;x++){ for(int i=x+d;i<a.length;i+=d){ int j=i-d; temp=a[i]; for(;j>=0&&temp<a[j];j-=d){ a[j+d]=a[j]; } a[j+d]=temp; } } if(d==1) break; } for(int i=0;i<a.length;i++) System.out.println(a[i]);}} |
3、简单选择排序
(1)基本思想:
在要排序的一组数中,选出最小的一个数与第一个位置的数交换;然后在剩下的数当中再找最小的与第二个位置的数交换,如此循环到倒数第二个数和最后一个数比较为止。
(2)实例:

(3)用java实现
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
|
public class selectSort { public selectSort(){ int a[]={1,54,6,3,78,34,12,45}; int position=0; for(int i=0;i<a.length;i++){ int j=i+1; position=i; int temp=a[i]; for(;j<a.length;j++){ if(a[j]<temp){ temp=a[j]; position=j; } } a[position]=a[i]; a[i]=temp; } for(int i=0;i<a.length;i++) System.out.println(a[i]); }} |
4、堆排序
(1)基本思想:
堆排序是一种树形选择排序,是对直接选择排序的有效改进。
堆的定义如下:具有n个元素的序列(h1,h2,...,hn),当且仅当满足(hi>=h2i,hi>=2i+1)或(hi<=h2i,hi<=2i+1)(i=1,2,...,n/2)时称之为堆。在这里只讨论满足前者条件的堆。由堆的定义可以看出,堆顶元素(即第一个元素)必为最大项(大顶堆)。完全二叉树可以很直观地表示堆的结构。堆顶为根,其它为左子树、右子树。初始时把要排序的数的序列看作是一棵顺序存储的二叉树,调整它们的存储序,使之成为一个堆,这时堆的根节点的数最大。然后将根节点与堆的最后一个节点交换。然后对前面(n-1)个数重新调整使之成为堆。依此类推,直到只有两个节点的堆,并对它们作交换,最后得到有n个节点的有序序列。从算法描述来看,堆排序需要两个过程,一是建立堆,二是堆顶与堆的最后一个元素交换位置。所以堆排序有两个函数组成。一是建堆的渗透函数,二是反复调用渗透函数实现排序的函数。
(2)实例:
初始序列:46,79,56,38,40,84
建堆:
交换,从堆中踢出最大数
剩余结点再建堆,再交换踢出最大数
依次类推:最后堆中剩余的最后两个结点交换,踢出一个,排序完成。
(3)用java实现
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
|
import java.util.Arrays;public class HeapSort { int a[]={49,38,65,97,76,13,27,49,78,34,12,64,5,4,62,99,98,54,56,17,18,23,34,15,35,25,53,51}; public HeapSort(){ heapSort(a); } public void heapSort(int[] a){ System.out.println("开始排序"); int arrayLength=a.length; //循环建堆 for(int i=0;i<arrayLength-1;i++){ //建堆 buildMaxHeap(a,arrayLength-1-i); //交换堆顶和最后一个元素 swap(a,0,arrayLength-1-i); System.out.println(Arrays.toString(a)); } } private void swap(int[] data, int i, int j) { // TODO Auto-generated method stub int tmp=data[i]; data[i]=data[j]; data[j]=tmp; } //对data数组从0到lastIndex建大顶堆 private void buildMaxHeap(int[] data, int lastIndex) { // TODO Auto-generated method stub //从lastIndex处节点(最后一个节点)的父节点开始 for(int i=(lastIndex-1)/2;i>=0;i--){ //k保存正在判断的节点 int k=i; //如果当前k节点的子节点存在 while(k*2+1<=lastIndex){ //k节点的左子节点的索引 int biggerIndex=2*k+1; //如果biggerIndex小于lastIndex,即biggerIndex+1代表的k节点的右子节点存在 if(biggerIndex<lastIndex){ //若果右子节点的值较大 if(data[biggerIndex]<data[biggerIndex+1]){ //biggerIndex总是记录较大子节点的索引 biggerIndex++; } } //如果k节点的值小于其较大的子节点的值 if(data[k]<data[biggerIndex]){ //交换他们 swap(data,k,biggerIndex); //将biggerIndex赋予k,开始while循环的下一次循环,重新保证k节点的值大于其左右子节点的值 k=biggerIndex; }else{ break; } } } }} |
5、冒泡排序
(1)基本思想:
在要排序的一组数中,对当前还未排好序的范围内的全部数,自上而下对相邻的两个数依次进行比较和调整,让较大的数往下沉,较小的往上冒。即:每当两相邻的数比较后发现它们的排序与排序要求相反时,就将它们互换。
(2)实例:

(3)用java实现
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
|
public class bubbleSort {public bubbleSort(){ int a[]={49,38,65,97,76,13,27,49,78,34,12,64,5,4,62,99,98,54,56,17,18,23,34,15,35,25,53,51}; int temp=0; for(int i=0;i<a.length-1;i++){ for(int j=0;j<a.length-1-i;j++){ if(a[j]>a[j+1]){ temp=a[j]; a[j]=a[j+1]; a[j+1]=temp; } } } for(int i=0;i<a.length;i++) System.out.println(a[i]); }} |
6、快速排序
(1)基本思想:
选择一个基准元素,通常选择第一个元素或者最后一个元素,通过一趟扫描,将待排序列分成两部分,一部分比基准元素小,一部分大于等于基准元素,此时基准元素在其排好序后的正确位置,然后再用同样的方法递归地排序划分的两部分。
(2)实例:

(3)用java实现
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
|
public class quickSort { int a[]={49,38,65,97,76,13,27,49,78,34,12,64,5,4,62,99,98,54,56,17,18,23,34,15,35,25,53,51};public quickSort(){ quick(a); for(int i=0;i<a.length;i++) System.out.println(a[i]);}public int getMiddle(int[] list, int low, int high) { int tmp = list[low]; //数组的第一个作为中轴 while (low < high) { while (low < high && list[high] >= tmp) { high--; } list[low] = list[high]; //比中轴小的记录移到低端 while (low < high && list[low] <= tmp) { low++; } list[high] = list[low]; //比中轴大的记录移到高端 } list[low] = tmp; //中轴记录到尾 return low; //返回中轴的位置 } public void _quickSort(int[] list, int low, int high) { if (low < high) { int middle = getMiddle(list, low, high); //将list数组进行一分为二 _quickSort(list, low, middle - 1); //对低字表进行递归排序 _quickSort(list, middle + 1, high); //对高字表进行递归排序 } } public void quick(int[] a2) { if (a2.length > 0) { //查看数组是否为空 _quickSort(a2, 0, a2.length - 1); } } } |
7、归并排序
(1)基本排序:
归并(Merge)排序法是将两个(或两个以上)有序表合并成一个新的有序表,即把待排序序列分为若干个子序列,每个子序列是有序的。然后再把有序子序列合并为整体有序序列。
(2)实例:

(3)用java实现
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
|
import java.util.Arrays;public class mergingSort {int a[]={49,38,65,97,76,13,27,49,78,34,12,64,5,4,62,99,98,54,56,17,18,23,34,15,35,25,53,51};public mergingSort(){ sort(a,0,a.length-1); for(int i=0;i<a.length;i++) System.out.println(a[i]);}public void sort(int[] data, int left, int right) { // TODO Auto-generated method stub if(left<right){ //找出中间索引 int center=(left+right)/2; //对左边数组进行递归 sort(data,left,center); //对右边数组进行递归 sort(data,center+1,right); //合并 merge(data,left,center,right); }}public void merge(int[] data, int left, int center, int right) { // TODO Auto-generated method stub int [] tmpArr=new int[data.length]; int mid=center+1; //third记录中间数组的索引 int third=left; int tmp=left; while(left<=center&&mid<=right){ //从两个数组中取出最小的放入中间数组 if(data[left]<=data[mid]){ tmpArr[third++]=data[left++]; }else{ tmpArr[third++]=data[mid++]; } } //剩余部分依次放入中间数组 while(mid<=right){ tmpArr[third++]=data[mid++]; } while(left<=center){ tmpArr[third++]=data[left++]; } //将中间数组中的内容复制回原数组 while(tmp<=right){ data[tmp]=tmpArr[tmp++]; } System.out.println(Arrays.toString(data));} } |
8、基数排序
(1)基本思想:
将所有待比较数值(正整数)统一为同样的数位长度,数位较短的数前面补零。然后,从最低位开始,依次进行一次排序。这样从最低位排序一直到最高位排序完成以后,数列就变成一个有序序列。
(2)实例:
(3)用java实现
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
|
import java.util.ArrayList;import java.util.List;public class radixSort { int a[]={49,38,65,97,76,13,27,49,78,34,12,64,5,4,62,99,98,54,101,56,17,18,23,34,15,35,25,53,51};public radixSort(){ sort(a); for(int i=0;i<a.length;i++) System.out.println(a[i]);}public void sort(int[] array){ //首先确定排序的趟数; int max=array[0]; for(int i=1;i<array.length;i++){ if(array[i]>max){ max=array[i]; } } int time=0; //判断位数; while(max>0){ max/=10; time++; } //建立10个队列; List<ArrayList> queue=new ArrayList<ArrayList>(); for(int i=0;i<10;i++){ ArrayList<Integer> queue1=new ArrayList<Integer>(); queue.add(queue1); } //进行time次分配和收集; for(int i=0;i<time;i++){ //分配数组元素; for(int j=0;j<array.length;j++){ //得到数字的第time+1位数; int x=array[j]%(int)Math.pow(10, i+1)/(int)Math.pow(10, i); ArrayList<Integer> queue2=queue.get(x); queue2.add(array[j]); queue.set(x, queue2); } int count=0;//元素计数器; //收集队列元素; for(int k=0;k<10;k++){ while(queue.get(k).size()>0){ ArrayList<Integer> queue3=queue.get(k); array[count]=queue3.get(0); queue3.remove(0); count++; } } } } }转自 http://blog.csdn.net/pzhtpf/article/details/7559896 |
排序算法 Java实现版的更多相关文章
- 经典的排序算法java实现版
/** * * @author yuzhiping * @version 1.0 * 功能说明:计算机领域经典的算法 * */ public class sortAlgorithm<T exte ...
- 常见排序算法(JS版)
常见排序算法(JS版)包括: 内置排序,冒泡排序,选择排序,插入排序,希尔排序,快速排序(递归 & 堆栈),归并排序,堆排序,以及分析每种排序算法的执行时间. index.html <! ...
- 排序算法Java版,以及各自的复杂度,以及由堆排序产生的top K问题
常用的排序算法包括: 冒泡排序:每次在无序队列里将相邻两个数依次进行比较,将小数调换到前面, 逐次比较,直至将最大的数移到最后.最将剩下的N-1个数继续比较,将次大数移至倒数第二.依此规律,直至比较结 ...
- 十大经典排序算法的JS版
前言 个人博客:Damonare的个人博客 如遇到问题或有更好的优化方法,可以: 提issue给我 或是pull requests 我都会看到并处理,欢迎Star. 这世界上总存在着那么一些看似相似但 ...
- 八大排序算法Java实现
本文对常见的排序算法进行了总结. 常见排序算法如下: 直接插入排序 希尔排序 简单选择排序 堆排序 冒泡排序 快速排序 归并排序 基数排序 它们都属于内部排序,也就是只考虑数据量较小仅需要使用内存的排 ...
- 6种基础排序算法java源码+图文解析[面试宝典]
一.概述 作为一个合格的程序员,算法是必备技能,特此总结6大基础算法.java版强烈推荐<算法第四版>非常适合入手,所有算法网上可以找到源码下载. PS:本文讲解算法分三步:1.思想2.图 ...
- 十大基础排序算法[java源码+动静双图解析+性能分析]
一.概述 作为一个合格的程序员,算法是必备技能,特此总结十大基础排序算法.java版源码实现,强烈推荐<算法第四版>非常适合入手,所有算法网上可以找到源码下载. PS:本文讲解算法分三步: ...
- 八大排序算法Java
目录(?)[-] 概述 插入排序直接插入排序Straight Insertion Sort 插入排序希尔排序Shells Sort 选择排序简单选择排序Simple Selection Sort 选择 ...
- 十大经典排序算法总结——JavaScrip版
首先,对于评述算法优劣术语的说明: 稳定:如果a原本在b前面,而a=b,排序之后a仍然在b的前面:即排序后2个相等键值的顺序和排序之前它们的顺序相同 不稳定:如果a原本在b的前面,而a=b,排序之后a ...
随机推荐
- PS2251-07 海力士(金士顿U盘量产,成功!)
U盘挂掉了,用芯片无忧测到是这个样子的,看到是PS2251-07 海力士的 网上找了很多方法都不成功,最后找到了两个可以量产成功的方法,建议使用第一种. 首先,附上三个检测工具 芯片无忧.GetInf ...
- java中的继承要点
java的一大特性既是:继承. 1.因为有了一个子类继承了一个父类,才有了后面的多态. 2.类的继承,不要为了节省代码,为了继承而继承,把那个没有任何相关的类链接在一起,继承必须用在 is a,就是例 ...
- DX笔记之一---Direct3D基础
一.预备知识 1.表面 表面就是Direct3D用于储存2D图像数据的一个像素矩阵.width和height以像素为单位,pitch以字节单位,用接口IDirect3DSurface来描述表面 Loc ...
- iOS 数据持久性存储-对象归档
对象归档是将对象归档以文件的形式保存到磁盘中(也称为序列化,持久化),使用的时候读取该文件的保存路径读取文件的内容(也称为解档,反序列化) 主要涉及两个类:NSKeyedArichiver.NSKey ...
- Web控件
Web控件可分三类 HTML控件 html服务器控件是在HTML控件的基础上,额外增加了一个在当前页面唯一的ID属性值和一个runat = "server" 属性html服务器控件 ...
- iOS判断手机中是否 有 SIM卡---备用
[CTSIMSupportGetSIMStatus() isEqualToString:kCTSIMSupportSIMStatusNotInserted]可以判断是否插入了sim卡. 前提是把下面的 ...
- gcc链接g++编译生成的静态库和动态库的makefile示例
使用c++开发程序或者库时,将库提供给其他人使用. 然而使用者是使用c开发的程序,链接g++编译生成的库时,于链接gcc生成的库,有所不同. 首先是静态库,以链接g++编译生成的libmylib.a为 ...
- C# 日期格式精确到毫秒 【转】
有时候我们要对时间进行转换,达到不同的显示效果 默认格式为:2009-6-24 14:33:34 如果要换成成200906,06-2009,2009-6-24或更多的该怎么办呢 我们要用到:DateT ...
- hdu 5147 Sequence II
http://acm.hdu.edu.cn/showproblem.php?pid=5147 题意:问有多少个这样的四元组(a,b,c,d),满足条件是 1<=a<b<c<d; ...
- 揪出“凶手”——实战WinDbg分析电脑蓝屏原因
http://www.appinn.com/blue-screen-search-code/ 蓝屏代码查询器 – 找出蓝屏的元凶 11 文章标签: windows / 系统 / 蓝屏. 蓝屏代码查询器 ...