FFT(快速傅里叶变换):HDU 4609 3-idiots
3-idiots
Time Limit: 10000/5000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 3560 Accepted Submission(s): 1241
OMeGa catched three men who had been streaking in the street. Looking
as idiots though, the three men insisted that it was a kind of
performance art, and begged the king to free them. Out of hatred to the
real idiots, the king wanted to check if they were lying. The three men
were sent to the king's forest, and each of them was asked to pick a
branch one after another. If the three branches they bring back can form
a triangle, their math ability would save them. Otherwise, they would
be sent into jail.
However, the three men were exactly idiots, and
what they would do is only to pick the branches randomly. Certainly,
they couldn't pick the same branch - but the one with the same length as
another is available. Given the lengths of all branches in the forest,
determine the probability that they would be saved.
Each test case begins with the number of branches N(3≤N≤105).
The following line contains N integers a_i (1≤a_i≤105), which denotes the length of each branch, respectively.
#include <algorithm>
#include <iostream>
#include <cstring>
#include <cstdio>
#include <cmath>
using namespace std;
const int maxn=;
const long double PI=acos(-1.0);
struct complex{
long double r,i;
complex(long double r_=0.0,long double i_=0.0){
r=r_;i=i_;
}
complex operator +(complex &a){
return complex(a.r+r,a.i+i);
}
complex operator -(complex &a){
return complex(r-a.r,i-a.i);
}
complex operator *(complex a){
return complex(r*a.r-i*a.i,i*a.r+a.i*r);
}
}A[maxn]; void Rader(complex *a,int len){
for(int i=,j=len>>;i<len-;i++){
if(i<j)swap(a[i],a[j]);
int k=len>>;
while(j>=k){
j-=k;
k>>=;
}
j+=k;
}
} void FFT(complex *a,int len,int on){
Rader(a,len);
for(int h=;h<=len;h<<=){
complex wn(cos(-on*PI*/h),sin(-on*PI*/h));
for(int j=;j<len;j+=h){
complex w(1.0,);
for(int k=j;k<j+(h>>);k++){
complex x=a[k];
complex y=a[k+(h>>)]*w;
a[k]=x+y;
a[k+(h>>)]=x-y;
w=w*wn;
}
}
}
if(on==-)
for(int i=;i<len;i++)
a[i].r/=len;
}
int a[maxn];
long long num[maxn];
int main(){
#ifndef ONLINE_JUDGE
//freopen("","r",stdin);
//freopen("","w",stdout);
#endif
int T,n,len=;
scanf("%d",&T);
while(T--){
scanf("%d",&n);
memset(A,,sizeof(A));
memset(num,,sizeof(num));
while(len<=)len<<=;
for(int i=;i<=n;i++)
scanf("%d",&a[i]);
sort(a+,a+n+);len=;
while(len<=a[n]*)len<<=;
for(int i=;i<=n;i++)
A[a[i]].r++;
FFT(A,len,);
for(int i=;i<len;i++)
A[i]=A[i]*A[i];
FFT(A,len,-);
for(int i=;i<len;i++)
num[i]=(long long)(A[i].r+0.5);
for(int i=;i<=n;i++)
num[a[i]<<]--;
for(int i=;i<len;i++)
num[i]>>=;
for(int i=;i<len;i++)
num[i]+=num[i-];
long long cnt=;
for(int i=;i<=n;i++){
cnt+=num[len-]-num[a[i]];
cnt-=(long long)(n-i)*(i-);
cnt-=n-;
cnt-=(long long)(n-i)*(n-i-)/;
}
long long tot=((long long)n*(n-)*(n-))/;
printf("%.7lf\n",1.0*cnt/tot);
}
return ;
}
FFT(快速傅里叶变换):HDU 4609 3-idiots的更多相关文章
- FFT 快速傅里叶变换 学习笔记
FFT 快速傅里叶变换 前言 lmc,ikka,attack等众多大佬都没教会的我终于要自己填坑了. 又是机房里最后一个学fft的人 早背过圆周率50位填坑了 用处 多项式乘法 卷积 \(g(x)=a ...
- CQOI2018 九连环 打表找规律 fft快速傅里叶变换
题面: CQOI2018九连环 分析: 个人认为这道题没有什么价值,纯粹是为了考算法而考算法. 对于小数据我们可以直接爆搜打表,打表出来我们可以观察规律. f[1~10]: 1 2 5 10 21 4 ...
- 「学习笔记」FFT 快速傅里叶变换
目录 「学习笔记」FFT 快速傅里叶变换 啥是 FFT 呀?它可以干什么? 必备芝士 点值表示 复数 傅立叶正变换 傅里叶逆变换 FFT 的代码实现 还会有的 NTT 和三模数 NTT... 「学习笔 ...
- FFT —— 快速傅里叶变换
问题: 已知A[], B[], 求C[],使: 定义C是A,B的卷积,例如多项式乘法等. 朴素做法是按照定义枚举i和j,但这样时间复杂度是O(n2). 能不能使时间复杂度降下来呢? 点值表示法: 我们 ...
- 浅谈FFT(快速傅里叶变换)
本文主要简单写写自己在算法竞赛中学习FFT的经历以及一些自己的理解和想法. FFT的介绍以及入门就不赘述了,网上有许多相关的资料,入门的话推荐这篇博客:FFT(最详细最通俗的入门手册),里面介绍得很详 ...
- [C++] 频谱图中 FFT快速傅里叶变换C++实现
在项目中,需要画波形频谱图,因此进行查找,不是很懂相关知识,下列代码主要是针对这篇文章. http://blog.csdn.net/xcgspring/article/details/4749075 ...
- matlab中fft快速傅里叶变换
视频来源:https://www.bilibili.com/video/av51932171?t=628. 博文来源:https://ww2.mathworks.cn/help/matlab/ref/ ...
- FFT快速傅里叶变换算法
1.FFT算法概要: FFT(Fast Fourier Transformation)是离散傅氏变换(DFT)的快速算法.即为快速傅氏变换.它是根据离散傅氏变换的奇.偶.虚.实等特性,对离散傅立叶变换 ...
- FFT快速傅里叶变换
FFT太玄幻了,不过我要先膜拜HQM,实在太强了 1.多项式 1)多项式的定义 在数学中,由若干个单项式相加组成的代数式叫做多项式.多项式中的每个单项式叫做多项式的项,这些单项式中的最高项次数,就是这 ...
- [学习笔记]FFT——快速傅里叶变换
大力推荐博客: 傅里叶变换(FFT)学习笔记 一.多项式乘法: 我们要明白的是: FFT利用分治,处理多项式乘法,达到O(nlogn)的复杂度.(虽然常数大) FFT=DFT+IDFT DFT: 本质 ...
随机推荐
- 第二篇:python高级之装饰器
python高级之装饰器 python高级之装饰器 本节内容 高阶函数 嵌套函数及闭包 装饰器 装饰器带参数 装饰器的嵌套 functools.wraps模块 递归函数被装饰 1.高阶函数 高阶函 ...
- rabbitmq 消息持久化之receive and send
二: 任务分发 &消息持久化 启用多个接收端的时候如果某一个receive 关闭要保证消息有反馈是否收到 send端 #-*- coding: UTF-8 -*-import pika ...
- C#语法糖之第一篇:自动属性&隐式类型
今天给大家分享一下C#语法糖的简单的两个知识点吧. 自动属性:在 C# 4.0 和更高版本中,当属性的访问器中不需要其他逻辑时,自动实现的属性可使属性声明更加简洁. 客户端代码还可通过这些属性创建对象 ...
- 在iframe中获取iframe外的对象
parent.document.getElementById("dom ID"); $($(parent.document.getElementById("video-i ...
- webServices 执行流程,(我是菜鸟,我怕谁,仅代表个人理解,欢迎各位大神们指导,不和您的胃口,请默默离开!!)
二.上图仅仅代表个人理解,下面以代码方式解释一下. (1) strtus.xml <?xml version="1.0" encoding="UTF-8" ...
- 谈一下关于C++函数包装问题
在C++中,我们经常遇到在某个特定的时刻,需要将函数进行包装调用,尤其是当我们需要将不同签名的函数放到同一个集合时,由于函数签名不一致导致我们不能直接将各式各样的函数指针放到诸如list这样的集合中, ...
- centos中文乱码修改字符编码使用centos支持中文
如何你的centos显示中文乱码,只要修改字符编码使centos支持中文就可以了,没有这个文件可以创建它,下面是修改步骤 一.中文支持 安装中文语言包: 复制代码 代码如下: yum groupins ...
- JQuery无法获取动态添加的图片宽度问题解决办法
$('.imgUl li,.v_img').click(function(){ var _left = 0; var _top = 0; $('body').append('<div class ...
- gdb小结
testGdb.c #include<stdio.h> int getSum(int a,int b){ printf("a+b=%d\n",a+b); return ...
- dede列表标签递增数字生成
今天给人家调试程序,用到[field:global name=autoindex/ ] 调用指定频道.而频道前面需要加CSS代码,CSS代码正好是按序号排列的 忽然发现,是从0开始. 于是修改了一下代 ...