bzoj 1951 [Sdoi2010]古代猪文(数论知识)
【题目链接】
http://www.lydsy.com/JudgeOnline/problem.php?id=1951
【思路】
一道优(e)秀(xin)的数论题。
首先我们要求的是(G^sigma{ C(n,n/i),i|n })%P,即G^M %P,根据费马小定理G^(P-1) ≡1(mod P),我们要求的就是G^(M%(P-1)) %P。
考虑C(n,i)%(P-1),由于n i P都比较大所以不好求组合数。发现P-1可以分解质因数为2,3,4679,35617,将C(n,i)对每一个质因子取模,会得到一个形为x≡ ai(mod pi)的模线性方程组,可以用中国剩余定理确定x。对于C(n,i)%p,此时p比较小,我们可以用lucas定理求解。
总的来说就是先用O(sqrt(n))的时间枚举约数,然后用lucas定理求出不同模数下的ai,最后联立方程组,中国剩余定理解。
注意当(G,P)!=1的时候费马小定理不成立,此时答案为0。
关于lucas的写法,a^p-2 %p是a在模p下的逆,因为a^(p-2) *a=a^(p-1),由费马小定理得a^(p-1) %p=1,因此p必须满足为质数才能使用这种方法。
【定理】
1— 欧拉定理
当a与p互质时,a^phi(p) mod p=1
费马小定理即欧拉定理在p为质数时的特例, a(p-1) ≡1 mod p
2— Lucas定理
C(n,m)%p=C(n/p,m/p)*C(n%p,m%p)
【代码】
#include<cmath>
#include<cstdio>
#include<cstring>
#include<iostream>
using namespace std; typedef long long LL;
const int N = ;
const LL mod[]={,,,,}; LL fac[][N],a[],n,G; void gcd(LL a,LL b,LL &x,LL& y) {
if(!b) { x=;y=; }
else gcd(b,a%b,y,x) , y-=x*(a/b);
}
LL pow(LL x,LL p,LL MOD) {
LL ans=;
while(p) {
if(p&) ans=(ans*x)%MOD;
x=(x*x)%MOD; p>>=;
}
return ans;
}
LL C(LL n,LL m,int x) {
if(n<m) return ;
return (fac[x][n]*pow(fac[x][n-m]*fac[x][m],mod[x]-,mod[x]))%mod[x];
}
LL lucas(LL n,LL m,int x) {
if(!m) return ;
return lucas(n/mod[x],m/mod[x],x)*C(n%mod[x],m%mod[x],x)%mod[x];
}
LL china() {
LL M=,d,x,y,ans=;
for(int i=;i<;i++) M*=mod[i];
for(int i=;i<;i++) {
d=M/mod[i];
gcd(d,mod[i],x,y);
ans=(ans+d*x*a[i])%M;
}
while(ans<=) ans+=M;
ans=(ans+M)%M;
return ans;
}
void get_fac() {
for(int i=;i<;i++) {
fac[i][]=;
for(int j=;j<=mod[i];j++)
fac[i][j]=(fac[i][j-]*j)%mod[i];
}
}
int main() {
get_fac();
scanf("%lld%lld",&n,&G);
G%=mod[];
if(!G) { puts(""); return ; }
for(int i=;i*i<=n;i++) if(n%i==) {
LL tmp=n/i;
for(int j=;j<;j++) {
a[j]=(a[j]+lucas(n,tmp,j))%mod[j];
if(tmp!=i) a[j]=(a[j]+lucas(n,i,j))%mod[j];
}
}
printf("%lld",pow(G,china(),mod[])); return ;
}
bzoj 1951 [Sdoi2010]古代猪文(数论知识)的更多相关文章
- BZOJ 1951: [Sdoi2010]古代猪文( 数论 )
显然答案是G^∑C(d,N)(d|N).O(N^0.5)枚举N的约数.取模的数999911659是质数, 考虑欧拉定理a^phi(p)=1(mod p)(a与p互质), 那么a^t mod p = a ...
- BZOJ 1951: [Sdoi2010]古代猪文 [Lucas定理 中国剩余定理]
1951: [Sdoi2010]古代猪文 Time Limit: 1 Sec Memory Limit: 64 MBSubmit: 2194 Solved: 919[Submit][Status] ...
- 【刷题】BZOJ 1951 [Sdoi2010]古代猪文
Description "在那山的那边海的那边有一群小肥猪.他们活泼又聪明,他们调皮又灵敏.他们自由自在生活在那绿色的大草坪,他们善良勇敢相互都关心--" --选自猪王国民歌 很久 ...
- bzoj 1951 [Sdoi2010]古代猪文 ——数学综合
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=1951 数学综合题. 费马小定理得指数可以%999911658,又发现这个数可以质因数分解.所 ...
- bzoj 1951: [Sdoi2010]古代猪文
#include<cstdio> #include<iostream> #include<cstring> #include<cmath> #defin ...
- BZOJ.1951.[SDOI2010]古代猪文(费马小定理 Lucas CRT)
题目链接 \(Description\) 给定N,G,求\[G^{\sum_{k|N}C_n^k}\mod\ 999911659\] \(Solution\) 由费马小定理,可以先对次数化简,即求\( ...
- bzoj 1951: [Sdoi2010]古代猪文 【中国剩余定理+欧拉定理+组合数学+卢卡斯定理】
首先化简,题目要求的是 \[ G^{\sum_{i|n}C_{n}^{i}}\%p \] 对于乘方形式快速幂就行了,因为p是质数,所以可以用欧拉定理 \[ G^{\sum_{i|n}C_{n}^{i} ...
- BZOJ 1951 [SDOI2010]古代猪文 (组合数学+欧拉降幂+中国剩余定理)
题目大意:求$G^{\sum_{m|n} C_{n}^{m}}\;mod\;999911659\;$的值$(n,g<=10^{9})$ 并没有想到欧拉定理.. 999911659是一个质数,所以 ...
- BZOJ 1951: [Sdoi2010]古代猪文 ExCRT+欧拉定理+Lucas
欧拉定理不要忘记!! #include <bits/stdc++.h> #define N 100000 #define ll long long #define ull unsigned ...
随机推荐
- Python 的格式化字符串format函数
阅读mattkang在csdn中的博客<飘逸的python - 增强的格式化字符串format函数>所做笔记 自从python2.6开始,新增了一种格式化字符串的函数str.format( ...
- STM32的FSMC总线驱动ili9341,掉电重启无法正常显示的问题
问题描述 通过STM32的FSMC总线驱动ili9341,程序调试和刚下载的时候,显示完全正常.可是就在我掉电关机,重新启动的时候就完全跑飞了.这令我非常疑惑.以下是我的FSMC总线配置程序, sta ...
- 【JTA】JTA允许应用程序执行分布式事务处理
JTA,即Java Transaction API,JTA允许应用程序执行分布式事务处理——在两个或多个网络计算机资源上访问并且更新数据.JDBC驱动程序的JTA支持极大地增强了数据访问能力. htt ...
- 【JPA】query新对象 需要 构造函数
构造函数 @Query("select g from Note g where id=?1" ) Note findById(Long id); @Query("sele ...
- 制作第一个UI图集
按钮分有两种形式,一种是普通按钮,也就是一张没有文字的按钮图片,在需要用时,就在上面写上不同的.当前所需要的文字.量一种按钮则是图片按钮,这种按钮的特点是整个按钮就是一张图片,它既是按钮也是图片. 在 ...
- Adapting to views using css or js
using css @media screen and (-ms-view-state: fullscreen-landscape) { } @media screen and (-ms-view-s ...
- DB天气app冲刺第三天
昨天很郁闷而且烦躁的的过了一天 什么也没弄.今天其实也没有怎么做..进度非常慢.. 因为个人的问题 所以这两天的效率非常慢. 但今天还是做了一些东西.把listview做出来了.做出了一个按钮的效果. ...
- iOS8定位问题
正文:主要解决iOS8以前能定位,但是在iOS8时候无法定位的问题 在iOS8以前,我们的GPS定位是在用户设置的里面显示的是总是使用,但是在iOS8以后,苹果修改了这部分授权,你需要多加入2个pli ...
- shell 流程控制
for循环: #!/bin/bash for file in $(ls /ect) do echo $file done
- List<>过滤重复的简单方法
List<int> ss = new List<int>(); ss.Add(); ss.Add(); ss.Add(); ss.Add(); ss.Add(); ss.Add ...