《Linear Algebra and Its Applications》-chaper1-线性方程组-线性相关性
这篇文章主要简单的记录所谓的“线性相关性”。
线性相关性的对象是向量R^n,对于向量方程,如果说x1v1 + x2v2 + …+xmvm = 0(其中xi是常数,vi是向量)有且仅有一个平凡解,那么我们称m个向量组成的集合{v1,v2,v3…vm}是一个线性无关集,反之,则称向量集合{v1,v2,v3,…vm}是线性相关的。
这个定义似乎显得有些唐突,我们反过来理解所谓的“线性相关”,即在一组非零解的情况下,我们将某个一个系数xi不为0的向量移到等式的另一侧,从这种形式来看,我们得到了向量vi关于其他向量的一个线性组合。
即我们可以这样理解所谓的线性相关,m个向量R^n中,某个向量可以由其余的向量以线性组合的形式表达出来,且系数不都为0,那么我们就可以称这m个向量是线性相关的。
即如下的这个定理。(它显然存在一个更加严密的证明过程,上文中只是给出了非常模糊、直觉性的介绍)

那么现在我们面临这样一个问题,对于给定的m个向量R^n,我们如何判断其线性相关性呢?
有着怎样的定义就有着怎样的算法,通过一开始我们对线性相关性的定义我们就能够发现,我们只需要讨论向量方程x1v1 + x2v2 + x3v3 +…+xmvm = 0的解即可,这就回到了我们上几节介绍的利用化简增广矩阵来求解矩阵方程、向量方程以及线性方程组的问题上来。
下面给出一道例题。

同样的,基于对向量之间线性相关性的讨论,我们还可以讨论矩阵各列的线性相关性。

通过上文关于线性相关性的介绍,我们更加工具化的来完成这个过程,结合相关性和平凡解的定义,我们可以给出这样的一条定理:

<=>矩阵方程仅有平凡解
<=> A的各列向量线性无关
<=>A经过初等行变化有n(矩阵A的列数)个主元位置
<=>A等价于单位矩阵I
这几条结论以及更全面的结论,在后面的可逆矩阵定理的介绍中会介绍,这里只是通过矩阵列的线性无关给出一系列性质。很显然根据这几句话的等价性,我们不难看到这条定理的正确性。
那么基于这条定理,我们能够进一步得到判断线性相关性的简单算法。如何保证Ax = 0有且仅有平凡解呢?这就回到了线性方程组的解的问题上来,可以从那条路上走然后推出一个结论,我们这里提供一个更加朴素的路子。
从平凡解(即非零解)的定义出发, R^n向量x有一个分量不为0即可,我们只需要将系数矩阵化成行阶梯式的时候,令主元的系数为0即可。即对角元素的乘积为0,即|A| = 0.
于是我们可以给出这样一条定理:

《Linear Algebra and Its Applications》-chaper1-线性方程组-线性相关性的更多相关文章
- 《Linear Algebra and Its Applications》-chaper1-向量方程、矩阵方程和线性方程组
向量: 向量的基本运算:向量的运算最基本的一件事情,就是基于它n个分量上进行,即对于两个分量的向量a = <a1,a2>,b = <b1,b2>,有a + b = <a1 ...
- 《Linear Algebra and Its Applications》-chaper6-正交性和最小二乘法-最小二乘问题
最小二乘问题: 结合之前给出向量空间中的正交.子空间W.正交投影.正交分解定理.最佳逼近原理,这里就可以比较圆满的解决最小二乘问题了. 首先我们得说明一下问题本身,就是在生产实践过程中,对于巨型线性方 ...
- 《Linear Algebra and Its Applications》-chaper6-正交性和最小二乘法-基本概念与定理
这一章节我们主要讨论定义在R^n空间上的向量之间的关系,而这个关系概括来讲其实就是正交,然后引入正交投影.最佳逼近定理等,这些概念将为我们在求无解的线性方程组Ax=b的最优近似解打下基石. 正交性: ...
- 《Linear Algebra and Its Applications》-chaper3-行列式-克拉默法则
计算线性方程组唯一解的克拉默法则:
- 《Linear Algebra and Its Applications》-chaper2-矩阵的逆
矩阵的逆: 逆矩阵的定义: 类比于我们在研究实数的时候回去讨论一个数的倒数,对应的,在矩阵运算中,当AB = I的时候,A,B互称为逆矩阵,这里的I类似实数中的1,表示单位矩阵,即对角线是1其余位置是 ...
- 《Linear Algebra and Its Applications》-chaper2-矩阵代数中的基本性质
之前我们曾经提及,完成了线性方程组-向量方程-矩阵方程的等价转化之后,我们对于现实问题中的线性方程组,只需将其转移到矩阵(向量)方程,然后利用矩阵代数中的各种方法和性质进行计算或者化简即可,而下面我们 ...
- 《Linear Algebra and Its Applications》-chaper1-线性方程组- 线性变换
两个定理非常的简单显然,似乎是在证明矩阵代数中的基本运算律.但是它为后面用“线性变换”理解矩阵-向量积Ax奠定了理论基础. 结合之前我们讨论过的矩阵和向量的积Ax的性质,下面我们就可以引入线性变换了. ...
- 《Linear Algebra and Its Applications》-chaper4-向量空间-子空间、零空间、列空间
在线性代数中一个非常重要的概念就是向量空间R^n,这一章节将主要讨论向量空间的一系列性质. 一个向量空间是一些向量元素构成的非空集合V,需要满足如下公理: 向量空间V的子空间H需要满足如下三个条件: ...
- 《Linear Algebra and Its Applications》-chaper6-正交性和最小二乘法- 格拉姆-施密特方法
构造R^n子空间W一组正交基的算法:格拉姆-施密特方法.
随机推荐
- Codeforces 190E - Counter Attack
[题意]给一个无向图的反图(即给定的边实际上不存在,而未给的边是存在的),求连通块数.(点数n<=5*10^5,边数m<=10^6) 一开始我想的用DFS,枚举每一个点,跳过不存在的点,直 ...
- C#中的操作数据库的SQLHelper类
using System; using System.Collections.Generic; using System.Configuration; using System.Data; using ...
- visual studio 2015 删除空行 ,缩进css
查找 ^(?([^\r\n])\s)*\r?$\r?\n
- javascript 实用函数
1.去除字符串空格 /*去左空格*/ function ltrim(s) { return s.replace(/^(\s*| *)/, ""); } /*去右空格*/ funct ...
- 移动端网站或APP点击后出现闪动或灰色背景
隐藏文本框阴影 input, textarea{-webkit-appearance: @none;} 取消手机点击屏幕时,会出现的灰块 html,body{-webkit-text-size-adj ...
- Dhroid框架笔记(DhNet、Adapter)
3.1.1 DhNet用于获取网络中的数据 DhNet net=new DhNet("路劲"); net.addParam("key", "参数&qu ...
- C语言的运行机制
目的:通过分析c语言转换成汇编代码后的执行过程对汇编语言和X86构架有一个初步认识 实验代码 1 #include <stdio.h> 2 3 int g(int x) 4 { 5 ret ...
- MySQL 删除数据库
MySQL 删除数据库 使用 mysqladmin 删除数据库 使用普通用户登陆mysql服务器,你可能需要特定的权限来创建或者删除 MySQL 数据库. 所以我们这边使用root用户登录,root用 ...
- 【USACO 2.4.1】两只塔姆沃斯牛
[题目描述] 两只牛逃跑到了森林里.农夫John开始用他的专家技术追捕这两头牛.你的任务是模拟他们的行为(牛和John). 追击在10x10的平面网格内进行.一个格子可以是: 一个障碍物, 两头牛(它 ...
- 『重构--改善既有代码的设计』读书笔记----Replace Temp with Query
Replace Temp with Query,顾名思义,表示你用查询来替换临时变量本身,临时变量对于函数来说是只有当前函数可见的,如果你在同类的别的地方要用到这个变量你就必须重新写表达式来获取这个变 ...