Description

致力于建设全国示范和谐小村庄的H村村长dadzhi,决定在村中建立一个瞭望塔,以此加强村中的治安。我们将H村抽象为一维的轮廓。如下图所示 我们可以用一条山的上方轮廓折线(x1, y1), (x2, y2), …. (xn, yn)来描述H村的形状,这里x1 < x2 < …< xn。瞭望塔可以建造在[x1, xn]间的任意位置, 但必须满足从瞭望塔的顶端可以看到H村的任意位置。可见在不同的位置建造瞭望塔,所需要建造的高度是不同的。为了节省开支,dadzhi村长希望建造的塔高度尽可能小。请你写一个程序,帮助dadzhi村长计算塔的最小高度。

Input

第一行包含一个整数n,表示轮廓折线的节点数目。接下来第一行n个整数, 为x1 ~ xn. 第三行n个整数,为y1 ~ yn。

Output

仅包含一个实数,为塔的最小高度,精确到小数点后三位。

Sample Input

【输入样例一】
6
1 2 4 5 6 7
1 2 2 4 2 1
【输入样例二】
4
10 20 49 59
0 10 10 0

Sample Output

【输出样例一】
1.000
【输出样例二】
14.500

HINT

对于100%的数据, N ≤ 300,输入坐标绝对值不超过106,注意考虑实数误差带来的问题。

Source

半平面交。对于每条线段,所能看到其整条线段的点一定的在其所延长直线的上方,因此我们可以对所以直线求一次半平面交。

然后,最优解一定在线段端点处或半平面交所得多边形的顶点处。

 #include<iostream>
#include<algorithm>
#include<cmath>
#include<cstdio>
#include<cstdlib>
#include<cstring>
using namespace std; #define eps (1e-6)
#define oo ((double)(1ll<<50))
#define maxn 310
int n,m,tot,cnt;
double ans = oo;
struct NODE
{
double x,y;
friend inline NODE operator + (const NODE &p,const NODE &q) { return (NODE) {p.x+q.x,p.y+q.y}; }
friend inline NODE operator - (const NODE &p,const NODE &q) { return (NODE) {p.x-q.x,p.y-q.y}; }
friend inline NODE operator * (const NODE &p,const double &q) { return (NODE) {p.x*q,p.y*q}; }
friend inline double operator /(const NODE &p,const NODE &q) { return p.x*q.y-p.y*q.x; }
inline double alpha() { return atan2(y,x); }
}mou[maxn],pol[maxn],pp[maxn];
struct LINE
{
NODE p,v; double slop;
inline void maintain() { slop = v.alpha(); }
friend inline bool operator <(const LINE &l1,const LINE &l2) { return l1.slop < l2.slop; }
}lines[maxn],qq[maxn];
struct SCAN
{
double x,y; int id; bool sign;
friend inline bool operator <(const SCAN &a,const SCAN &b)
{
if (a.x != b.x) return a.x < b.x;
else return a.sign < b.sign;
}
}bac[maxn]; inline bool ol(const LINE &l,const NODE &p) { return l.v/(p-l.p) > ; } inline NODE cp(const LINE &a,const LINE &b)
{
NODE u = a.p - b.p;
double t = (b.v/u)/(a.v/b.v);
return a.p+a.v*t;
} inline bool para(const LINE &a,const LINE &b)
{
return fabs(a.v/b.v) < eps;
} inline void ready()
{
for (int i = ;i < n;++i)
{
lines[++tot] = (LINE) {mou[i],(mou[i+]-mou[i])*1e-};
lines[tot].maintain();
}
lines[++tot] = (LINE) {(NODE) {-oo,},(NODE){,-0.001}};
lines[tot].maintain(); lines[++tot] = (LINE) {(NODE) {,oo},(NODE){-0.001,}};
lines[tot].maintain(); lines[++tot] = (LINE) {(NODE) {oo,},(NODE){,0.001}};
lines[tot].maintain(); lines[++tot] = (LINE) {(NODE) {,-oo},(NODE){0.001,}};
lines[tot].maintain();
} inline int half_plane_intersection()
{
sort(lines+,lines+tot+);
int head,tail;
qq[head = tail = ] = lines[];
for (int i = ;i <= tot;++i)
{
while (head < tail&&!ol(lines[i],pp[tail-])) --tail;
while (head < tail&&!ol(lines[i],pp[head])) ++head;
qq[++tail] = lines[i];
if (para(qq[tail],qq[tail-]))
{
tail--;
if (ol(qq[tail],lines[i].p)) qq[tail] = lines[i];
}
if (head < tail) pp[tail-] = cp(qq[tail],qq[tail-]);
}
while (head < tail && !ol(qq[head],pp[tail-])) --tail;
if (tail-head <= ) return ;
pp[tail] = cp(qq[tail],qq[head]);
for (int i = head;i <= tail;++i) pol[++m] = pp[i];
pol[] = pol[m];
return m;
} inline void work()
{
int all = ;
for (int i = ;i <= n;++i)
bac[++all] = (SCAN) { mou[i].x,mou[i].y,i,false };
for (int i = ;i <= m;++i)
if (pol[i].x >= mou[].x&&pol[i].x <= mou[n].x)
bac[++all] = (SCAN) { pol[i].x,pol[i].y,i,true };
sort(bac+,bac+all+);
int s1,s2;
for (int i = ;i <= all;++i) if (bac[i].sign) { s1 = bac[i].id-; break; }
for (int i = ;i <= all;++i)
{
LINE l = (LINE) {(NODE) {bac[i].x,},(NODE) {,}},l1; NODE p;
if (!bac[i].sign)
{
l1= (LINE) {pol[s1],pol[s1+]-pol[s1]};
s2 = bac[i].id;
}
else
{
l1= (LINE) {mou[s2],mou[s2+]-mou[s2]};
s1 = bac[i].id;
}
p = cp(l,l1);
ans = min(ans,fabs(p.y-bac[i].y));
}
} int main()
{
freopen("1038.in","r",stdin);
freopen("1038.out","w",stdout);
scanf("%d ",&n);
for (int i = ;i <= n;++i) scanf("%lf",&mou[i].x);
for (int i = ;i <= n;++i) scanf("%lf",&mou[i].y);
ready();
half_plane_intersection();
work();
printf("%.3lf",ans);
fclose(stdin); fclose(stdout);
return ;
}

BZOJ 1038 瞭望塔的更多相关文章

  1. bzoj 1038 瞭望塔 半平面交+分段函数

    题目大意 给你一座山,山的形状在二维平面上为折线 给出\((x_1,y_1),(x_2,y_2)...(x_n,y_n)\)表示山的边界点或转折点 现在要在\([x_1,x_n]\)(闭区间)中选择一 ...

  2. 【BZOJ】【1038】【ZJOI2008】瞭望塔

    计算几何/半平面交 说是半平面交,实际上只是维护了个下凸壳而已……同1007水平可见直线 对于每条线段,能看到这条线段的点都在这条线段的“上方”,那么对所有n-1条线段求一个可视区域的交,就是求一个半 ...

  3. 【BZOJ 1038】 1038: [ZJOI2008]瞭望塔

    1038: [ZJOI2008]瞭望塔 Description 致力于建设全国示范和谐小村庄的H村村长dadzhi,决定在村中建立一个瞭望塔,以此加强村中的治安.我们将H村抽象为一维的轮廓.如下图所示 ...

  4. 【BZOJ 1038】[ZJOI2008]瞭望塔

    [题目链接]:http://www.lydsy.com/JudgeOnline/problem.php?id=1038 [题意] [题解] 可以看到所有村子的瞭望塔所在的位置只会是在相邻两个村子所代表 ...

  5. 1038: [ZJOI2008]瞭望塔 - BZOJ

    Description 致力于建设全国示范和谐小村庄的H村村长dadzhi,决定在村中建立一个瞭望塔,以此加强村中的治安.我们将H村抽象为一维的轮廓.如下图所示 我们可以用一条山的上方轮廓折线(x1, ...

  6. bzoj千题计划126:bzoj1038: [ZJOI2008]瞭望塔

    http://www.lydsy.com/JudgeOnline/problem.php?id=1038 本题可以使用三分法 将点按横坐标排好序后 对于任意相邻两个点连成的线段,瞭望塔的高度 是单峰函 ...

  7. 1038: [ZJOI2008]瞭望塔

    半平面交. 半平面指的就是一条直线的左面(也不知道对不对) 半平面交就是指很多半平面的公共部分. 这道题的解一定在各条直线的半平面交中. 而且瞭望塔只可能在各个点或者半平面交折线的拐点处. 求出半平面 ...

  8. 「BZOJ1038」「洛谷P2600」「ZJOI2008」瞭望塔 半平面交+贪心

    题目链接 BZOJ/洛谷 题目描述 致力于建设全国示范和谐小村庄的H村村长dadzhi,决定在村中建立一个瞭望塔,以此加强村中的治安. 我们将H村抽象为一维的轮廓.如下图所示: 我们可以用一条山的上方 ...

  9. [BZOJ1038][ZJOI2008]瞭望塔(半平面交)

    1038: [ZJOI2008]瞭望塔 Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 2999  Solved: 1227[Submit][Statu ...

随机推荐

  1. form与action之setter与getter(转)

    对于表单提交数据给action时候,可以简单的用setter与getter函数实现值的传递. 例如在jsp里有这么个form: <s:form action="login"& ...

  2. 源文件名和public 类名

    问题: 源文件名和类名不一样 解决方法:将源文件的文件名test修改成Test 

  3. 【转】HTML5的语音输入 渐进使用HTML5语言识别, so easy!

    转自: 本文地址:http://www.zhangxinxu.com/wordpress/?p=2408 一.本不想写此文 HTML5语音识别(现在一般用在搜索上),目前相关介绍还是挺多的.为何呢?因 ...

  4. SQL Server 中关于EXCEPT和INTERSECT的使用方法

    熟练使用SQL Server中的各种使用方法会给查询带来非常多方便.今天就介绍一下EXCEPT和INTERSECT.注意此语法仅在SQL Server 2005及以上版本号支持. EXCEPT是指在第 ...

  5. Rebuild my Ubuntu 分类: ubuntu shell 2014-11-08 18:23 193人阅读 评论(0) 收藏

    全盘格式化,重装了Ubuntu和Windows,记录一下重新配置Ubuntu过程. //build-essential sudo apt-get install build-essential sud ...

  6. 3高并发server:多路IO之epoll

     1 epoll epoll是Linux下多路复用IO接口select/poll的增强版本号,它能显著提高程序在大量并.发连接中仅仅有少量活跃的情况下的系统CPU利用率,由于它会复用文件描写叙述符 ...

  7. [CodeForce]358D Dima and Hares

    有N<3000只宠物要喂,每次只能喂一只,每喂一只宠物,宠物的满足度取决于: 1 紧靠的两个邻居都没喂,a[i] 2 邻居中有一个喂过了,b[i] 3 两个邻居都喂过了,c[i] 把所有宠物喂一 ...

  8. 第三篇:python基础之编码问题

    python基础之编码问题   python基础之编码问题 本节内容 字符串编码问题由来 字符串编码解决方案 1.字符串编码问题由来 由于字符串编码是从ascii--->unicode---&g ...

  9. sql 减去分钟

    SQL SERVER:SELECT DATEADD( minute,-10,GETDATE()) ORACLE:SELECT to_char(sysdate -interval '10' minute ...

  10. MyTask2

    先把核心代码贴上 public void solve() { //Console.WriteLine("请输入你需要生成多少人的数据以及年龄最大值(75以内):"); //int ...