总传送门

T1. [USACO19JAN] Redistricting P

luogu P5202

  • 思路:

    这种每次选出段长有个上限\(k\)的常常是和单调队列有关。

    这里是单调队列优化dp

    不过一开始想不太清有什么单调性。

    发现每次的贡献为\(0/1\)

    因此如果\(i<j\)且\(dp_i<dp_j\)。\(i\)最多就和\(j\)一样贡献直接删去。

    如果\(dp_i=dp_j\)你需要考虑中间段的贡献,决定是否删。

    不过总之我们的目的是让优劣性单调递减(队首最优)

    如果段\([i+1..j]\)中\(cnt('H')>cnt('G')\)在\(i\)能取到时一定会比\(j\)优,所以保留\(i\)

    否则直接弹出\(i\)
  • code:
点击查看代码
#include<bits/stdc++.h>
using namespace std;
const int N=1e6+5;
char s[N];
int dp[N],sh[N],sg[N];
int Q[N],hd=1,tl;
bool W(int l,int r) {
return (sg[r]-sg[l]>=sh[r]-sh[l]);
}
bool cmp(int x,int y) {return dp[x]==dp[y]?W(x,y):dp[x]>dp[y];}
int main() {
int n,k,l=1,r;
scanf("%d%d",&n,&k);
scanf("%s",s+1);
for(int i=1;i<=n;i++)sh[i]=sh[i-1]+(s[i]=='H'),sg[i]=sg[i-1]+(s[i]=='G');
dp[0]=0;Q[++tl]=0;
for(int i=1;i<=n;i++) {
while(hd<=tl&&Q[hd]+k<i) hd++;
dp[i]=dp[Q[hd]]+W(Q[hd],i);
while(hd<=tl&&cmp(Q[tl],i)) tl--;
Q[++tl]=i;
}
printf("%d\n",dp[n]);
return 0;
}

T2.[USACO20JAN] Cave Paintings P

luogu P6008

  • 思路:

    并查集

    最简单的思路就是从下往上灌水。

    如果某两个节点在\(i+1\)行不连通,在第\(i\)行联通。然后这两个节点在\(i……n\)时是独立的。(如果独立就相当于乘法原理,不独立就会合成同类一起作贡献)

    推广到带权并查集,合并两个联通块价值为它们乘积+1

    当然我考场上想复杂了。

    因为我一直往图论上套(思维僵化,犯了跟noionline一样的错误)。

    不过还是搞了很久,我把它缩点(如果两个点通过往下、左、右走能联通就合成一个点一起作贡献)

    可能因为我这种做法每行横向一段是手动缩点(而不是并查集),就跑的飞快。

    缩点后成为森林,树上dp。(别忘了记录完起点)

    具体缩点写法,(和正常写法很像)到能合并的时机时,加一个新点代表(合并后的点),连向所有每个都能到的下层的节点(下层的森林上的节点已经构造好了)。
  • code:
点击查看代码
#include<bits/stdc++.h>
using namespace std;
typedef long long ll;
const int N=1e3+5;
const int M=2e6+5;
const int mod=1e9+7;
int n,m,st[M],tp;
char s[N][N];
int tt[N],ct,Ll,Rl,fa[M],nxt[M],to[M],head[M],ecnt,nd,pos[N][N];
void add_edge(int u,int v) {nxt[++ecnt]=head[u];to[ecnt]=v;head[u]=ecnt;}
int gt_fa(int u) {return fa[u]==u?u:fa[u]=gt_fa(fa[u]);}
void Union(int u,int v) {fa[gt_fa(u)]=gt_fa(v);}
int rt[M];
void Build() {
bool bg=0;
for(int i=n;i;i--) {
// printf("!%d\n",i);
if(!bg) {
for(int j=1;j<=m;j++) {
if(s[i][j]=='.') {
++nd;fa[nd]=nd;pos[i][j]=nd;
while(s[i][j+1]=='.') {
j++;pos[i][j]=nd;
}
}
}
if(nd){Ll=1;Rl=nd;bg=1;}
continue;
}
for(int j=1;j<=m;j++) {
if(s[i][j]=='.') {
++nd;fa[nd]=nd;pos[i][j]=nd; //tmp node
if(pos[i+1][j])Union(nd,pos[i+1][j]);
while(s[i][j+1]=='.') {
j++;pos[i][j]=nd;if(pos[i+1][j])Union(nd,pos[i+1][j]);
}
}
}
// new node
int nwR=nd;
ct=0;
for(int j=1;j<=m;j++) {
if(s[i][j]=='#') continue;
int x=gt_fa(pos[i][j]);
if(!rt[x]) {rt[x]=++nd;tt[++ct]=x;fa[nd]=nd;}
pos[i][j]=rt[x];
}
for(int j=Ll;j<=Rl;j++) {
int x=gt_fa(j);
if(!rt[x]) st[++tp]=x; //beginning node
else add_edge(rt[x],j);
// printf("%d(%d) %d\n",rt[x],x,j);
}
Ll=nwR+1;Rl=nd;
while(ct) {rt[tt[ct]]=0;ct--;}
// printf("[%d,%d]\n",Ll,Rl);
}
}
ll dp[M];
void DP(int u) {
dp[u]=1;
for(int i=head[u];i;i=nxt[i]) {
int v=to[i];
DP(v);
dp[u]=dp[u]*dp[v]%mod;
}
dp[u]++;
}
int main() {
// int n,m;
scanf("%d%d",&n,&m);
for(int i=1;i<=n;i++) scanf("%s",s[i]+1);
Build();
ll ans=1;
while(tp) {
int i=st[tp--];
DP(i);ans=ans*dp[i]%mod;
}
printf("%lld",ans);
return 0;
}

T3.[USACO20JAN] Non-Decreasing Subsequences P

P6009

  • 题意:给每一个长为\(n\)的数列,每个数的上限是\(k\),\(Q\)次问\([l_i,r_i]\)内的最长不降子序列的方案数

  • 思路:

    动态dp

    线段树维护\(z[x][y]\)表示上升子序列的权值为从\(x\)到\(y\)的方案数。

    \(O(q\log_2{n}\ k^2)\)

    难写又慢,而且发现玄机(\(q\)是\(n\)的\(20\)倍)

    想要把询问\(q\)复杂度,转到\(n\)上。接下来用到:

    中轴分治(自己乱创的,类似cdq)

    即分治时每次处理跨过\(mid=(l+r)/2\)的区间

    然后这个区间的结果为\(mid\)左边的部分和右边的部分合并起来

    因此要预处理从\(mid\)往左的答案,从\(mid\)往右的答案

    如果处理和查询的每一步是\(O(1)\)的话,这个算法的复杂度是\(O(nlog_2n+q)\)

    这样就能把\(q\)的复杂度转化到\(n\)上呢。

    合并显然需要:

    \(G[i][y]\):(右半边)开始的值为\(y\),前缀\(i\)的总方案数

    \(F[i][y]\):(左半边)结束的值为\(y\),后缀\(i\)的总方案数

    这里只说右半边(\(G\))的做法,\(F\)同理

    方便\(G\)的转移,我们定义\(g[x][y]\)为上面的\(z[x][y]\)的意思

    然后每次新添加\(a_i\)时:只有\(g[y][a_i]\ \ (1<=y<=a_i)\)会受影响。

    要找前面的一个\(z<=a_i\)

    \(g[y][a_i]+=\sum\limits_{z=1}^{a_i}g[y][z]\)

    还要考虑\(a_i\)独立为一个子序列

    \(g[a_i][a_i]++\)

    这样\(O(k^2)\)处理了\(g\)

    \(G[i][y]=\sum\limits_{z=y}^kg[y][z]\) 知道开头\(y\)枚举结尾

    \(O(k^2)\)而且这个跑的挺满的,实际需要\(O(k)\)就可以啦。

    \(G[i-1][y]\)相比\(G[i][y]\)只有在\(y<=a_i\)时,\(g[y][a_i]\)的改变会影响\(G[i][y]\),此时加上\(g[y][a_i]\)的变化量即可。

    总复杂度\(nlognk^2+qk\)而且肯定是跑不满的。

    我翻了翻题解,题解搞了数据结构来优化到\(nklognlogk\)实际上因为数据结构卡死了上限还跑的比我慢很多。

  • code

戳我
#include<bits/stdc++.h>
using namespace std;
typedef long long ll;
const int N=2e5+5;
const int M=N>>2;
const int K=21;
const int mod=1e9+7;
int a[N],b[N],q,n,k,rev[N],A[N],t1[N],t2[N];
//g[x][y]:(val)[x...y]; G[i][y]:(val)[y...],pre(pos) i
ll g[K][K],f[K][K],G[M][K],F[M][K],sG[M][K],ans[N];
struct query {int l,r;}Q[N];
void gt_gG(int l,int r) {
g[a[l]][a[l]]=G[l][a[l]]=1;
for(int i=l+1;i<=r;i++) {
int ai=a[i];
for(int y=1;y<=ai;y++) {
G[i][y]=G[i-1][y]-g[y][ai];
ll tmp=g[y][ai]+(y==ai);
for(int z=y;z<=ai;z++) tmp+=g[y][z];
g[y][ai]=(tmp%=mod);
G[i][y]=(G[i][y]+tmp)%mod;
}
for(int y=ai+1;y<=k;y++) {G[i][y]=G[i-1][y];}
}
}
void gt_fF(int l,int r) {
f[b[l]][b[l]]=F[l][b[l]]=1;
for(int i=l+1;i<=r;i++) {
int bi=b[i];
for(int y=bi;y<=k;y++) {
F[i][y]=F[i-1][y]-f[bi][y];
ll tmp=f[bi][y]+(y==bi);
for(int z=bi;z<=y;z++) tmp+=f[z][y];
f[bi][y]=(tmp%=mod);
F[i][y]=(F[i][y]+tmp)%mod;
}
for(int y=1;y<bi;y++)F[i][y]=F[i-1][y];
}
}
void Clear(int l,int r,int L,int R) {
for(int i=1;i<=k;i++)for(int j=1;j<=k;j++)g[i][j]=f[i][j]=0;
for(int i=l;i<=r;i++)for(int j=1;j<=k;j++)F[i][j]=0;
for(int i=L;i<=R;i++)for(int j=1;j<=k;j++)sG[i][j]=G[i][j]=0;
}
ll SG(int i,int j) {
if(sG[i][j])return sG[i][j];
for(int y=1;y<=j;y++) sG[i][j]=(sG[i][j]+G[i][y])%mod;
return sG[i][j];
}
void solve(int l,int r,int L,int R) {
int mid=(l+r)>>1;
gt_gG(mid+1,r);gt_fF(rev[mid],rev[l]);
int c1=L,c2=R;
for(int i=L;i<=R;i++) {
int x=A[i];
if(Q[x].l==Q[x].r) ans[x]=2;
else if(Q[x].l>mid) t2[c2--]=x;
else if(Q[x].r<=mid) t1[c1++]=x;
else {
int st=rev[Q[x].l],ed=Q[x].r;
ans[x]=1+SG(ed,k);
for(int yl=1;yl<=k;yl++) {
ans[x]=(ans[x]+F[st][yl]*(SG(ed,k)-SG(ed,yl-1)+1))%mod;
}
}
}
Clear(rev[mid],rev[l],mid+1,r);
if(c1!=L) {
for(int i=L;i<c1;i++) A[i]=t1[i];
solve(l,mid,L,c1-1);
}
if(c2!=R) {
for(int i=R;i>c2;i--) A[i]=t2[i];
solve(mid+1,r,c2+1,R);
}
} int main() {
scanf("%d%d",&n,&k);
for(int i=1;i<=n;i++) scanf("%d",&a[i]);
for(int i=1;i<=n;i++) {rev[i]=n-i+1;b[rev[i]]=a[i];}
// for(int i=1;i<=n;i++)printf("%d ",b[i]);puts("");
scanf("%d",&q);
for(int i=1;i<=q;i++) {scanf("%d%d",&Q[i].l,&Q[i].r);A[i]=i;}
solve(1,n,1,q);
for(int i=1;i<=q;i++) printf("%lld\n",(ans[i]+mod)%mod);
return 0;
}

清明欢乐赛(USACO选题)的更多相关文章

  1. contesthunter CH Round #64 - MFOI杯水题欢乐赛day1 solve

    http://www.contesthunter.org/contest/CH Round %2364 - MFOI杯水题欢乐赛 day1/Solve Solve CH Round #64 - MFO ...

  2. 2014.8.3情人节欢乐赛【Benny的农场】

    Benny的农场 (farm.pas/.c/.cpp) 时间限制:1s.空间限制:128MB 题目描述: Benny有一片农田需要灌溉.农田的形状为矩形,并被分为许多小块.每一块中都有一些水管.共有1 ...

  3. i春秋第二届春秋欢乐赛RSA256writeup

    i春秋第二届春秋欢乐赛writeup 下载之后进行解压 发现四个文件 0x01看到题目是RSA的  又看到public.key 所以直接用kali linux的openssl 0x02可以看到e就是E ...

  4. 2014-10-24 NOIP欢乐赛

    10-24NOIP欢乐赛 ——By 潘智力 题目名称 分火腿 无聊的会议 班服 时间限制 1s 1s 1s 内存限制 64MB 128MB 128MB 输入文件 hdogs.in meeting.in ...

  5. Comet OJ 夏季欢乐赛 篮球校赛

    Comet OJ 夏季欢乐赛 篮球校赛 题目传送门 题目描述 JWJU注重培养学生的"唱,跳,rap,篮球"能力.于是每年JWJU都会举办篮球校赛,来给同学们一个切磋篮球技术的平台 ...

  6. Comet OJ 夏季欢乐赛 Gree的心房

    Comet OJ 夏季欢乐赛 Gree的心房 题目传送门 题目描述 据说每一个走进Gree哥哥心房的小姑娘都没有能够再走出来-- 我们将Gree哥哥的心房抽象成一个n \times mn×m的地图,初 ...

  7. Comet OJ 夏季欢乐赛 分配学号

    Comet OJ 夏季欢乐赛 H 分配学号 题目传送门 题目描述 今天,是JWJU给同学们分配学号的一天!为了让大家尽可能的得到自己想要的学号,鸡尾酒让大家先从 [1,10^{18}][1,1018] ...

  8. Comet OJ 2019 夏季欢乐赛题解

    Comet OJ 2019 夏季欢乐赛题解 我是来骗访问量的 A 完全k叉树 \(n\)个点的完全k叉树的直径. 直接做 B 距离产生美 直接做 C 烤面包片 \(n!!!\mod p\) 显然\(n ...

  9. 【题解】Comet OJ 国庆欢乐赛 简要题解

    [题解]Comet OJ 国庆欢乐赛 简要题解 A 直接做 B 直接做,结论: \[ ans=\max([Max\ge \mathrm{sum}] Max,s[n]/2) \] C 考虑这样一个做法: ...

随机推荐

  1. Android实现蓝牙远程连接遇到的问题

    主要问到的问题:1.uuid获取不到,一直为空,后来发现android4.2之前使用uuid这种方法,目前尽量不使用uuid方式 2.socket.connect()出错,报read failed, ...

  2. Jackson 和 fastJSON 导包异常

    内容 一.异常信息 HTTP Status 400 - type Status report message org.springframework.http.converter.HttpMessag ...

  3. es5语法下,javascript如何判断函数是new还是()调用

    es5语法没有支持类class,但是可以通关函数来申明一个类,如下: function Person(name){ this.name=name; } var john=new Person('joh ...

  4. springboot集成spring security实现登录和注销

    文章目录 一.导入坐标 二.Users实体类及其数据库表的创建 三.controller,service,mapper层的实现 四.核心–编写配置文件 五.页面的实现 运行结果 一.导入坐标 < ...

  5. mysql-cluster-gpl-7.5.10-linux-glibc2.12-x86_64.tar.gz (有必要解释一下)

    大部分软件我们接触的时候会发现,起的名称有点怪异,所以我觉得有必要解释一下. 比如: mysql-cluster-gpl-7.5.10-linux-glibc2.12-x86_64.tar.gz 名称 ...

  6. show binary logs

    列出服务器上的二进制日志文件.该语句用作" purge binary logs语句"中描述的过程的一部分,该过程显示了如何确定可以清除哪些日志. show binary logs ...

  7. 使用 HTML5 input 类型提升移动端输入体验(转翻译)

    在过去的几年里,在移动设备上浏览网页已变得难以置信的受欢迎. 但是这些设备上的浏览体验,有时遗留很多的有待改进.当涉及到填写表单时,这一点尤为明显.幸运的是,HTML5规范引入了许多新input类型, ...

  8. HCIE笔记-第八节-传输层协议

    传输层:实现"端到端"的服务 应用到应用 端口 = port [逻辑端口] 基于应用级别的互访,就是 端口到端口的互访. 传输层 = 0-65535[端口范围] === TCP/U ...

  9. 2021.12.19 eleveni的刷题记录

    2021.12.19 eleveni的刷题记录 0. 本次记录有意思的题 0.1 每个点恰好经过一次并且求最小时间 P2469 [SDOI2010]星际竞速 https://www.luogu.com ...

  10. IO——字节缓冲流

    缓冲流:BufferedInputStream / BufferedOutputStream 提高IO效率,减少访问磁盘的次数 数据存储在缓冲区,调用flush将缓存区的内容写入文件中,也可以直接cl ...