kNN-预测
现在进行第五步,对数据进行预测
那么要做的的是从数据集里面拿出一部分作为要预测的,剩下的去比较,书上使用的是10%
# 对之前做好的kNN算法进行预测
# 首先获取之前构造好的kNN分类器、数据、规则化之后的数据
import kNN
import norm
# 倒完包之后先别急,目的是从规则化的数据集里面选100个出来,用分类器进行预测,计算错误率
# 这里图简单,直接用的前100个进行预测,后面会打乱数据集进行真正的随机
labelSet = norm.labelSet
norm_data = norm.norm_data
random_ratio = 0.10
norm_num = len(norm_data) # 1000
predict_num = int(random_ratio * norm_num) # 100
errorNum = 0.0
然后进行预测,预测的思路是:
- 100行预测,剩下900行作为比对
- 每次取1行,然后经过分类器得出结果,再与标记的结果进行比较,看正误
- 输出结果并计算错误率
# 开始预测
for i in range(predict_num):
predict_result = kNN.classifier(norm_data[i, :], norm_data[predict_num:norm_num, :], labelSet[predict_num:norm_num], 3)
# print(predict_result)
print("the classifier came back with:%d,the real answer is:%d " % (predict_result, labelSet[i]))
if predict_result != labelSet[i]:
errorNum += 1.0
print("the total error rate is:%f"%(errorNum/float(predict_num)))
然鹅,报错了
TypeError: unhashable type: 'numpy.ndarray'
这里的报错,网上找了很多,都没有解决,尝试自己一步一步解决
- 首先,在kNN文件中使用classifier是没有问题的
- 这里的错误指向的是kNN.classifier,但是检查了网上说的几种情况如变量名冲突、np.array类型都没有问题
- 那么只有可能是kNN中classifier的数据类型出了问题
- 通过报错提示的行数,将字典中的label类型从str修改为int,即可成功
修改代码如下
# kNN.py
label = int(label)
再次运行predict.py
# 对之前做好的kNN算法进行预测
# 首先获取之前构造好的kNN分类器、数据、规则化之后的数据
import kNN
import norm
# 倒完包之后先别急,目的是从规则化的数据集里面选100个出来,用分类器进行预测,计算错误率
# 这里图简单,直接用的前100个进行预测,后面会打乱数据集进行真正的随机
labelSet = norm.labelSet
norm_data = norm.norm_data
random_ratio = 0.10
norm_num = len(norm_data) # 1000
predict_num = int(random_ratio * norm_num) # 100
errorNum = 0.0
# 开始预测
for i in range(predict_num):
predict_result = kNN.classifier(norm_data[i, :], norm_data[predict_num:norm_num, :], labelSet[predict_num:norm_num], 3)
# print(predict_result)
print("the classifier came back with:%d,the real answer is:%d " % (predict_result, labelSet[i]))
if predict_result != labelSet[i]:
errorNum += 1.0
print("the total error rate is:%f"%(errorNum/float(predict_num)))
结果如下
the classifier came back with:3,the real answer is:3
the classifier came back with:2,the real answer is:2
the classifier came back with:1,the real answer is:1
...
the classifier came back with:3,the real answer is:1
the total error rate is:0.050000
但是,这也会带来一个问题,那就是原来kNN中的预测会报错,因为原来标签是对应的str类型
kNN-预测的更多相关文章
- tensorflow knn 预测房价 注意有 Min-Max Scaling
示例数据: 0.00632 18.00 2.310 0 0.5380 6.5750 65.20 4.0900 1 296.0 15.30 396.90 4.98 24.00 0.02731 0.00 ...
- 【Machine Learning】KNN算法虹膜图片识别
K-近邻算法虹膜图片识别实战 作者:白宁超 2017年1月3日18:26:33 摘要:随着机器学习和深度学习的热潮,各种图书层出不穷.然而多数是基础理论知识介绍,缺乏实现的深入理解.本系列文章是作者结 ...
- 海伦去约会——kNN算法
下午于屋中闲居,于是翻开<机器学习实战>一书看了看“k-邻近算法”的内容,并学习了一位很厉害的博主Jack Cui的代码,自己照着码了一遍.在此感谢博主Jack Cui的知识分享. 一.k ...
- KNN算法 - 数据挖掘算法(3)
(2017-04-10 银河统计) KNN算法即K Nearest Neighbor算法.这个算法是机器学习里面一个比较经典的.相对比较容易理解的算法.其中的K表示最接近自己的K个数据样本.KNN算法 ...
- python机器学习---线性回归案例和KNN机器学习案例
散点图和KNN预测 一丶案例引入 # 城市气候与海洋的关系研究 # 导包 import numpy as np import pandas as pd from pandas import Serie ...
- ES:AI 注释
为AI做注解: AI已经出第三版,大的框架没有改变,DNN也没有引入AI这本书.第四版网络版应流出,不知道最终定版如何! 强化学习的方法有大幅度更新,但从策略系统更新范畴看来,没有什么实质的改变,只是 ...
- Python机器学习笔记 Grid SearchCV(网格搜索)
在机器学习模型中,需要人工选择的参数称为超参数.比如随机森林中决策树的个数,人工神经网络模型中隐藏层层数和每层的节点个数,正则项中常数大小等等,他们都需要事先指定.超参数选择不恰当,就会出现欠拟合或者 ...
- 小数据玩转Pyspark(2)
一.客户画像 客户画像应用:精准营销(精准预测.个性化推荐.联合营销):风险管控(高风险用户识别.异常用户识别.高可疑交易识别):运营优化(快速决策.产品组合优化.舆情分析.服务升级):业务创新(批量 ...
- 股票价格涨跌预测—基于KNN分类器
code{white-space: pre;} pre:not([class]) { background-color: white; }if (window.hljs && docu ...
- [Python] 应用kNN算法预测豆瓣电影用户的性别
应用kNN算法预测豆瓣电影用户的性别 摘要 本文认为不同性别的人偏好的电影类型会有所不同,因此进行了此实验.利用较为活跃的274位豆瓣用户最近观看的100部电影,对其类型进行统计,以得到的37种电影类 ...
随机推荐
- Thymeleaf+Spring使用自己的工具类
第一种.提供思路,继承SpringStandardDialect,重写getExpressionObjectFactory方法,设置expressionObjectFactory的实际对象,并在Tem ...
- 是否可以继承 String 类?
String 类是 final 类,不可以被继承. 补充:继承 String 本身就是一个错误的行为,对 String 类型最好的重用方式是关 联关系(Has-A)和依赖关系(Use-A)而不是继承关 ...
- 学习zabbix(三)
前言: 学习zabbix之前,不得不了解的是SNMP协议 SNMP:简单网络管理协议(Simple Network Protocol) Snmp由两部分组成,监控端和被监控端 监控模式: 主动模式:N ...
- Java/C++实现装饰模式---模拟手机功能的升级过程
用装饰模式模拟手机功能的升级过程:简单的手机(SimplePhone)在接收来电时,会发出声音提醒主人:而JarPhone除了声音还能振动:更高级的手机(ComplexPhone)除了声音.振动外,还 ...
- IDEA修改代码后不用重新启动项目即可刷新
1.File--Settings--Build 2.Build,Execution,Deplyment--Compiler 3.选中打勾 "Build project automatical ...
- 使用 NIO 搭建一个聊天室
使用 NIO 搭建一个聊天室 前面刚讲了使用 Socket 搭建了一个 Http Server,在最后我们使用了 NIO 对 Server 进行了优化,然后有小伙伴问到怎么使用 Socket 搭建聊天 ...
- mpvue使用scss
安装scss 安装命令如下,不带版本号可能会导致报错 npm i sass-loader@7.3.1 -D npm i node-sass@4.14.1 -D 然后修改 build 文件夹下的 web ...
- Azure DevOps (九) 通过流水线推送镜像到Registry
上一篇文章我们研究了如何通过流水线编译出一个docker的镜像,本篇我们来研究一下,如何把编译好的镜像推送到镜像仓库去. 平时如果我们是单机部署,我们的docker本身就装在部署的机器上,我们在本机直 ...
- Spring的事务控制-基于注解的方式
模拟转账操作,即Jone减少500,tom增加500 如果有疑问请访问spring事务控制-基于xml方式 1.创建数据表 2.创建Account实体类 public class Account { ...
- 设计模式学习笔记(十六)迭代器模式及其在Java 容器中的应用
迭代器(Iterator)模式,也叫做游标(Cursor)模式.我们知道,在Java 容器中,为了提高容器遍历的方便性,把遍历逻辑从不同类型的集合类中抽取出来,避免向外部暴露集合容器的内部结构. 一. ...