题目

题目链接:593. 有效的正方形

题意:给出二维平面上四个点的坐标,判断这四个点是否能构成一个正方形,四个点的输入顺序不做任何保证。

思路

通过向量运算可以很轻松地解决这道题。任取一点向其他三点连线,可以得到三个向量。我们将这三个向量按照其长度从小到大排序,分别称为 \(\boldsymbol{v}_0, \boldsymbol{v}_1, \boldsymbol{v}_2\),若满足以下三个条件,则 \(\boldsymbol{v}_0, \boldsymbol{v}_1, \boldsymbol{v}_2\) 可以“张出”一个正方形(见下图):

  1. \(\boldsymbol{v}_0 + \boldsymbol{v}_1 = \boldsymbol{v}_2\)(四点构成平行四边形)
  2. \(\Vert\boldsymbol{v}_0\Vert = \Vert\boldsymbol{v}_1\Vert\)(平行四边形 + 邻边相等,此时四点构成菱形)
  3. \(\boldsymbol{v}_0 \cdot \boldsymbol{v}_1 = 0\)(菱形 + 直角,此时四点构成正方形)

我们还需要特别注意排除点重合的情况,例如四个点全部重合在一起,此时上面的三个条件仍然满足,但是不能构成正方形。

代码

以下为 Rust 语言的题解代码。

首先我们需要定义一个二维向量类型:

/// 二维向量
#[derive(Copy, Clone, Eq, PartialEq)]
struct Vector {
x: i32,
y: i32
} impl Vector {
fn new(from: (i32, i32), to: (i32, i32)) -> Self { Vector { x: to.0 - from.0, y: to.1 - from.1 } }
/// 向量的模的平方
fn len2(&self) -> i32 { self.x * self.x + self.y * self.y }
} impl std::ops::Mul for Vector {
type Output = i32;
/// 向量点乘
fn mul(self, rhs: Self) -> Self::Output { self.x * rhs.x + self.y * rhs.y }
} impl std::ops::Add for Vector {
type Output = Vector;
/// 向量加法
fn add(self, rhs: Self) -> Self::Output { Vector { x: self.x + rhs.x, y: self.y + rhs.y } }
}

解题函数如下:

impl Solution {
pub fn valid_square(p1: Vec<i32>, p2: Vec<i32>, p3: Vec<i32>, p4: Vec<i32>) -> bool {
let mut v = [
Vector::new((p1[0], p1[1]), (p2[0], p2[1])),
Vector::new((p1[0], p1[1]), (p3[0], p3[1])),
Vector::new((p1[0], p1[1]), (p4[0], p4[1]))
];
v.sort_by_key(Vector::len2);
return v[0].len2() > 0 // 点不重合
&& v[0] + v[1] == v[2] // 构成平行四边形
&& v[0].len2() == v[1].len2() // 构成菱形
&& v[0] * v[1] == 0; // 构成正方形
}
}

这种使用向量运算的解法有两个好处:

  • 只需要对向量做一次排序即可解决顶点不按顺序的问题,不需要分类讨论,较为简洁。
  • 全程都是整数运算,不需要担心浮点运算带来的舍入误差。

本题还有其他做法:

LeetCode 593. 有效的正方形(向量做法)的更多相关文章

  1. C#版 - Leetcode 593. 有效的正方形 - 题解

    版权声明: 本文为博主Bravo Yeung(知乎UserName同名)的原创文章,欲转载请先私信获博主允许,转载时请附上网址 http://blog.csdn.net/lzuacm. C#版 - L ...

  2. Java实现 LeetCode 593 有效的正方形(判断正方形)

    593. 有效的正方形 给定二维空间中四点的坐标,返回四点是否可以构造一个正方形. 一个点的坐标(x,y)由一个有两个整数的整数数组表示. 示例: 输入: p1 = [0,0], p2 = [1,1] ...

  3. C#刷遍Leetcode面试题系列连载(5):No.593 - 有效的正方形

    上一篇 LeetCode 面试题中,我们分析了一道难度为 Easy 的数学题 - 自除数,提供了两种方法.今天我们来分析一道难度为 Medium 的面试题. 今天要给大家分析的面试题是 LeetCod ...

  4. Leetcode 593.有效正方形

    有效正方形 给定二维空间中四点的坐标,返回四点是否可以构造一个正方形. 一个点的坐标(x,y)由一个有两个整数的整数数组表示. 示例: 输入: p1 = [0,0], p2 = [1,1], p3 = ...

  5. [LeetCode] Maximal Square 最大正方形

    Given a 2D binary matrix filled with 0's and 1's, find the largest square containing all 1's and ret ...

  6. [LeetCode] Valid Square 验证正方形

    Given the coordinates of four points in 2D space, return whether the four points could construct a s ...

  7. [LeetCode]最大系列(最大正方形221,最大加号标志764)

    221. 最大正方形 题目描述: 在一个由 0 和 1 组成的二维矩阵内,找到只包含 1 的最大正方形,并返回其面积. 示例: 输入: 1 0 1 0 0 1 0 1 1 1 1 1 1 1 1 1 ...

  8. Leetcode 473.火柴拼正方形

    火柴拼正方形 还记得童话<卖火柴的小女孩>吗?现在,你知道小女孩有多少根火柴,请找出一种能使用所有火柴拼成一个正方形的方法.不能折断火柴,可以把火柴连接起来,并且每根火柴都要用到. 输入为 ...

  9. Leetcode 221.最大的正方形

    最大的正方形 在一个由 0 和 1 组成的二维矩阵内,找到只包含 1 的最大正方形,并返回其面积. 示例: 输入: 1 0 1 0 0 1 0 1 1 1 1 1 1 1 1 1 0 0 1 0 输出 ...

随机推荐

  1. Training loop Run Builder

    以下内容来自deeplizard pyorch_P31  

  2. Ubuntu Linux处理Waiting for cache lock: Could not get lock /var/lib/dpkg/lock-frontend. It is held by process 3365 (unattended-upgr)问题

    问题 在Ubuntu中,执行apt install后,出现以下问题: Waiting for cache lock: Could not get lock /var/lib/dpkg/lock-fro ...

  3. 12.web基础与HTTP协议

    web基础与HTTP协议 目录 web基础与HTTP协议 web基础 域名概述 HTML概述 HTML基本标签 HTML语法规则 HTML文件结构 头标签中常用标签 内容标签中常用标签 静态网页与动态 ...

  4. 《Java编程思想》学习笔记_多态

    多态 多态指一个行为产生多种状态,针对父类类型可接收其子类类型,最终执行的状态由具体子类确定,其不同子类可呈现出不同状态.例如人[父类]都会跑步[行为],但小孩[子类]跑步.成年人[子类]跑步.运动员 ...

  5. 入行数字IC验证后会做些什么?

    半年前,公众号写了第一篇推文<入行数字IC验证的一些建议>,介绍了IC小白可以如何一步一步地摸索入门数字IC验证,同时也在知乎发了这篇入门贴,并且衍生出很多额外基础的内容,收获了不少的浏览 ...

  6. Redis开机自启

    添加开机启动服务 vi /etc/systemd/system/redis.service 在redis.service中输入以下内容 ps:ExecStart配置成自己的路径 [Unit] Desc ...

  7. NC204859 组队

    NC204859 组队 题目 题目描述 你的团队中有 \(n\) 个人,每个人有一个能力值 \(a_i\),现在需要选择若干个人组成一个团队去参加比赛,由于比赛的规则限制,一个团队里面任意两个人能力的 ...

  8. REST 表现层状态转化

    1.REST是什么? 1) REST:即 Representational State Transfer.(资源)表现层状态转化.是目前最流行的一种互联网软件架构.它结构清晰.符合标准.易于理解.扩展 ...

  9. SpringMVC 概述

    1. SpringMVC 概述 1) Spring 为展现层提供的基于 MVC 设计理念的优秀的 Web 框架,是目前最主流的MVC 框架之一 .MVC,M:model,模型层,指的是项目中的实体Ja ...

  10. 事务@Transactional注解的属性

    事务的传播行为 当事务方法被另一个事务方法调用时,必须指定事务应该如何传播.例如:方法可能继续在现有事务中运行,也可能开启一个新事务,并在自己的事务中运行.事务的传播行为可以由传播属性指定.Sprin ...