题目

首先令\(f_i\)表示权值和为\(i\)的二叉树数量,\(f_0=1\)。

转移为:\(f_k=\sum_{i=0}^n \sum_{j=0}^{k-c_i}f_j f_{k-c_i-j}\)

令多项式\(D=\sum_{i=0}^m [i在c中出现过]x^i\),\(F(x)为f的普通生成函数\),根据转移式发现F其实等于F卷积上F再卷积上D,再加上一个1,因为转移式转移不到\(f_0\)。

所以

\[\begin{align}
F&=F^2D+1\\
DF^2-F+1&=0\\
D^2F^2-DF+D&=0\\
(DF-\frac12)^2+D-\frac14&=0(配方)\\
(DF-\frac12)^2&=\frac14-D\\
DF-\frac12&=\pm \sqrt{\frac14-D}\\
\end{align}
\]

有两解,但是\(f_i\)肯定只有一种可能啊所以肯定有一个解不合法。


当取正号时:

\(DF-\frac12=\sqrt{\frac14-D}\),\(DF=\frac{\sqrt{1-4D}+1}{2}\)

等式右边的常数项为1,但是\(D\)的常数项为0,\(F\)的常数项为1,所以\(DF\)的常数项为0,矛盾。

所以只能取负号。

\[\begin{align}
DF&=\frac{1-\sqrt{1-4D}}{2}\\
F&=\frac{(1-\sqrt{1-4D})(1+\sqrt{1-4D})}{2D(1+\sqrt{1-4D})}\\
F&=\frac{2}{1+\sqrt{1-4D}}\\
\end{align}\\
\]

接下来直接多项式开根+求逆就行了。时间复杂度\(O(n logn)\)。

小知识:多项式能求逆的充要条件是常数项不为0,常数项>0则一定能开根。

点击查看代码
#include <bits/stdc++.h>

#define rep(i,n) for(int i=0;i<n;++i)
#define repn(i,n) for(int i=1;i<=n;++i)
#define LL long long
#define pii pair <LL,LL>
#define fi first
#define se second
#define mpr make_pair
#define pb push_back using namespace std; const LL MOD=998244353; LL qpow(LL x,LL a)
{
LL res=x,ret=1;
while(a>0)
{
if((a&1)==1) ret=ret*res%MOD;
a>>=1;
res=res*res%MOD;
}
return ret;
} namespace poly
{
vector <LL> rev;
void ntt(vector <LL> &a,LL G)
{
LL nn=a.size(),gn,g,x,y;vector <LL> tmp=a;
rep(i,nn) a[i]=tmp[rev[i]];
for(int len=1;len<nn;len<<=1)
{
gn=qpow(G,(MOD-1)/(len<<1));
for(int i=0;i<nn;i+=(len<<1))
{
g=1;
for(int j=i;j<i+len;++j,(g*=gn)%=MOD)
{
x=a[j];y=a[j+len]*g%MOD;
a[j]=(x+y)%MOD;a[j+len]=(x-y+MOD)%MOD;
}
}
}
}
vector <LL> convolution(vector <LL> a,vector <LL> b,LL G)
{
LL nn=1,bt=0,sv=a.size()+b.size()-1;while(nn<a.size()+b.size()-1) nn<<=1LL,++bt;
while(a.size()<nn) a.pb(0);while(b.size()<nn) b.pb(0);
rev.clear();
rep(i,nn)
{
rev.pb(0);
rev[i]=(rev[i>>1]>>1)|((i&1)<<(bt-1));
}
ntt(a,G);ntt(b,G);
rep(i,nn) (a[i]*=b[i])%=MOD;
ntt(a,qpow(G,MOD-2));
while(a.size()>sv) a.pop_back();
LL inv=qpow(nn,MOD-2);
rep(i,a.size()) (a[i]*=inv)%=MOD;
return a;
}
vector <LL> inverse(vector <LL> a,LL G)
{
if(a.size()==1) return vector <LL>{qpow(a[0],MOD-2)};
vector <LL> aa=a;while(aa.size()>(a.size()+1)>>1) aa.pop_back();
vector <LL> bb=inverse(aa,G);
LL nn=1,bt=0,sv=a.size();while(nn<a.size()*2) nn<<=1LL,++bt;
while(a.size()<nn) a.pb(0);while(bb.size()<nn) bb.pb(0);
rev.clear();
rep(i,nn)
{
rev.pb(0);
rev[i]=(rev[i>>1]>>1)|((i&1)<<(bt-1));
}
ntt(a,G);ntt(bb,G);
rep(i,nn) a[i]=(2LL-a[i]*bb[i]%MOD+MOD)*bb[i]%MOD;
ntt(a,qpow(G,MOD-2));
while(a.size()>sv) a.pop_back();
LL inv=qpow(nn,MOD-2);
rep(i,a.size()) (a[i]*=inv)%=MOD;
return a;
}
vector <LL> sqrt1(vector <LL> a,LL G)//常数项为1
{
if(a.size()==1) return vector <LL>{1};
vector <LL> aa=a;while(aa.size()>(a.size()+1)>>1) aa.pop_back();
vector <LL> bb=sqrt1(aa,G);while(bb.size()<a.size()) bb.pb(0);
vector <LL> bbb=inverse(bb,G);
LL nn=1,bt=0,sv=a.size();while(nn<a.size()*2) nn<<=1LL,++bt;
while(a.size()<nn) a.pb(0);while(bb.size()<nn) bb.pb(0);while(bbb.size()<nn) bbb.pb(0);
rev.clear();
rep(i,nn)
{
rev.pb(0);
rev[i]=(rev[i>>1]>>1)|((i&1)<<(bt-1));
}
LL mul=qpow(2,MOD-2);
ntt(a,G);ntt(bb,G);ntt(bbb,G);
rep(i,nn) a[i]=mul*(bb[i]+bbb[i]*a[i]%MOD)%MOD;
ntt(a,qpow(G,MOD-2));
while(a.size()>sv) a.pop_back();
LL inv=qpow(nn,MOD-2);
rep(i,a.size()) (a[i]*=inv)%=MOD;
return a;
}
} LL n,m;
vector <LL> c; int main()
{
cin>>n>>m;
rep(i,100001) c.pb(0);
LL x;
rep(i,n)
{
scanf("%lld",&x);
c[x]=1;
}
c[0]=1;
repn(i,100000) c[i]=MOD-c[i]*4LL;
c=poly::sqrt1(c,3);
(c[0]+=1LL)%=MOD;
c=poly::inverse(c,3);
rep(i,c.size()) (c[i]+=c[i])%=MOD;
repn(i,m) printf("%lld\n",c[i]);
return 0;
}

[题解] Codeforces 438 E The Child and Binary Tree DP,多项式,生成函数的更多相关文章

  1. Codeforces 438E The Child and Binary Tree [DP,生成函数,NTT]

    洛谷 Codeforces 思路 看到计数和\(998244353\),可以感觉到这是一个DP+生成函数+NTT的题. 设\(s_i\)表示\(i\)是否在集合中,\(A\)为\(s\)的生成函数,即 ...

  2. 【CF438E】The Child and Binary Tree(多项式运算,生成函数)

    [CF438E]The Child and Binary Tree(多项式运算,生成函数) 题面 有一个大小为\(n\)的集合\(S\) 问所有点权都在集合中,并且点权之和分别为\([0,m]\)的二 ...

  3. Codeforces 250 E. The Child and Binary Tree [多项式开根 生成函数]

    CF Round250 E. The Child and Binary Tree 题意:n种权值集合C, 求点权值和为1...m的二叉树的个数, 形态不同的二叉树不同. 也就是说:不带标号,孩子有序 ...

  4. [bzoj3625][Codeforces 250 E]The Child and Binary Tree(生成函数+多项式运算+FFT)

    3625: [Codeforces Round #250]小朋友和二叉树 Time Limit: 40 Sec  Memory Limit: 256 MBSubmit: 650  Solved: 28 ...

  5. [题解] CF438E The Child and Binary Tree

    CF438E The Child and Binary Tree Description 给一个大小为\(n\)的序列\(C\),保证\(C\)中每个元素各不相同,现在你要统计点权全在\(C\)中,且 ...

  6. [codeforces438E]The Child and Binary Tree

    [codeforces438E]The Child and Binary Tree 试题描述 Our child likes computer science very much, especiall ...

  7. [LeetCode]题解(python):114 Flatten Binary Tree to Linked List

    题目来源 https://leetcode.com/problems/flatten-binary-tree-to-linked-list/ Given a binary tree, flatten ...

  8. [LeetCode]题解(python):110 Balanced Binary Tree

    题目来源 https://leetcode.com/problems/balanced-binary-tree/ Given a binary tree, determine if it is hei ...

  9. Codeforces 219D Choosing Capital for Treeland:Tree dp

    题目链接:http://codeforces.com/problemset/problem/219/D 题意: 给你一棵树,n个节点. 树上的边都是有向边,并且不一定是从父亲指向儿子的. 你可以任意翻 ...

随机推荐

  1. PHP进阶玩法

    1. 删除不必要的模块. PHP随带内置的PHP模块.它们对许多任务来说很有用,但是不是每个项目都需要它们.只要输入下面这个命令,就可以查看可用的PHP模块: # php - m  一旦你查看了列表, ...

  2. 不安装运行时运行.NET程序

    好久没写文章了,有些同学问我公众号是不是废了?其实并没有.其实想写的东西很多很多,主要是最近公司比较忙,以及一些其他个人原因没有时间来更新文章.这几天抽空写了一点点东西,证明公众号还活着. 长久以来的 ...

  3. 【原创】医鹿APP九价HPV数据抓包分析

    本文所有教程及源码.软件仅为技术研究.不涉及计算机信息系统功能的删除.修改.增加.干扰,更不会影响计算机信息系统的正常运行.不得将代码用于非法用途,如侵立删! 医鹿APP九价HPV数据抓包分析 操作环 ...

  4. 利用图像二维熵实现视频信号丢失检测(Signal Loss Detection)

    1 图像二维熵 图像二维熵作为一种特征评价尺度能够反映出整个图像所含平均信息量的高低,熵值(H)越大则代表图像所包含的信息越多,反之熵值(H)越小,则图像包含的信息越少.对于图像信息量,可以简单地认为 ...

  5. 笃情开源:我和 Apache DolphinScheduler 社区的故事

    背景 本文的主人翁是 2 次飞机参会现场交流,四天研究就把 DolphinScheduler 用上生产的来自车联网行业的大数据 boy - 黄立同学.怎么样,听起来是不是有点 crazy?下面就来看看 ...

  6. 用VS Code搞Qt6:至简窗口部件——QWidget

    在正题开始之前,老周照例扯点别的.嗯,咱们扯一下在 VS 2022 下结合 CMake 开发 Qt6 时的环境变量设置问题.在VS Code 中,通够通过 CMake Tools 扩展的配置来设置环境 ...

  7. Vue组件的继承用法

    Vue组件的继承用法 点击打开视频讲解 vue组件的继承适用于UI几乎一样,只是数据不一样的情况下,但是这种情况通过统一封装组件也是能实现的,小功能建议用封装,大功能建议用组件继承,因为大功能在结合搜 ...

  8. 如何开发一款基于 vite+vue3 的在线表格系统(下)

    在上篇内容中我们为大家分享了详细介绍Vue3和Vite的相关内容.在本篇中我们将从项目实战出发带大家了解Vite+Vue3 的在线表格系统的构建. 使用Vite初始化Vue3项目 在这里需要注意:根据 ...

  9. SpringBoot整合Redis实现常用功能

    SpringBoot整合Redis实现常用功能 建议大小伙们,在写业务的时候,提前画好流程图,思路会清晰很多. 文末有解决缓存穿透和击穿的通用工具类. 1 登陆功能 我想,登陆功能是每个项目必备的功能 ...

  10. ArkUI 页面路由

    很多应用由多个页面组成,不同的页面承担着不一样的功能.比如,从音乐列表页面点击歌曲,跳转到该歌曲的播放界面.开发者需要通过页面路由将这些页面串联起来. 在 js -> default -> ...