sg函数入门理解
首先理解sg函数必须先理解mex函数
mex是求除它集合内的最小大于等于0的整数,例:mex{1,2}=0;mex{2}=0;mex{0,1,2}=3;mex{0,5}=1。
而sg函数是啥呢?
对于任意状态 x , 定义 sg(x) = mex(f),其中f 是 x 后继状态的sg函数值的集合(就是上述mex中的数值)。最后返回值(也就是sg(x))为0为必败点,不为零必胜点。

看不懂,咱直接来个例子:
例如:取石子问题,有1堆n个的石子,每次只能取{1,3,4}个石子,先取完石子者胜利,那么各个数的SG值为多少?
sg[0]=0,f[]={1,3,4},
x=1时,可以取走1-f{1}个石子,剩余{0}个,mex{sg[0]}={0},故sg[1]=1;
x=2时,可以取走2-f{1}个石子,剩余{1}个,mex{sg[1]}={1},故sg[2]=0;
x=3时,可以取走3-f{1,3}个石子,剩余{2,0}个,mex{sg[2],sg[0]}={0,0},故sg[3]=1;
x=4时,可以取走4-f{1,3,4}个石子,剩余{3,1,0}个,mex{sg[3],sg[1],sg[0]}={1,1,0},故sg[4]=2;
x=5时,可以取走5-f{1,3,4}个石子,剩余{4,2,1}个,mex{sg[4],sg[2],sg[1]}={2,0,1},故sg[5]=3;
以此类推.....
x 0 1 2 3 4 5 6 7 8....
sg[x] 0 1 0 1 2 3 2 0 1...
计算从1-n范围内的SG值。
f(存储可以走的步数,f[0]表示可以有多少种走法)
这下就ojbk了吧

f[]需要从小到大排序
1.可选步数为1~m的连续整数,直接取模即可,SG(x) = x % (m+1);
2.可选步数为任意步,SG(x) = x;
3.可选步数为一系列不连续的数,用GetSG()计算
再附个模板吧
1 //f[]:可以取走的石子个数
2 //sg[]:0~n的SG函数值
3 int f[maxn],sg[maxn],mex[maxn];
4 void getSG(int n){
5 int i,j;
6 memset(sg,0,sizeof(sg));
7 for(i=1;i<=n;i++){
8 memset(mex,0,sizeof(mex));
9 for(j=1;f[j]<=i&&f[j]<=m;j++) //注意加f[i]的限定条件,此处为f[j]<=m
10 mex[sg[i-f[j]]]=1;
11 for(j=0;j<=n;j++){ //求mex中未出现的最小的非负整数
12 if(mex[j]==0){
13 sg[i]=j;
14 break;
15 }
16 }
17 //cout<<i<<" "<<sg[i]<<endl;
18 }
19 }
sg函数入门理解的更多相关文章
- (转载)-关于sg函数的理解
最近学习了nim博弈,但是始终无法理解sg函数为什么sg[S]=mex(sg[S'] | S->S'),看到一篇博文解释的不错,截取了需要的几章节. 四.Sprague-Grundy数的提出 我 ...
- SG函数的理解集应用
转载自知乎牛客竞赛——博弈论入门(函数讲解+真题模板) SG函数 作用 对于一个状态i为先手必胜态当且仅当SG(i)!=0. 转移 那怎么得到SG函数尼. SG(i)=mex(SG(j))(状态i可以 ...
- sg函数的理解
sg,是用来判断博弈问题的输赢的,当sg值为0的时候,就是输,不为0就是赢: 在这之前,我们规定一个对于集合的操作mex,表示最小的不属于该集合的非负整数. 举几个栗子:mex{0,1,2}=3,me ...
- HDU 1848 Fibonacci again and again(SG函数入门)题解
思路:SG打表 参考:SG函数和SG定理[详解] 代码: #include<queue> #include<cstring> #include<set> #incl ...
- SG函数入门&&HDU 1848
SG函数 sg[i]为0表示i节点先手必败. 首先定义mex(minimal excludant)运算,这是施加于一个集合的运算,表示最小的不属于这个集合的非负整数.例如mex{0,1,2,4}=3. ...
- SG函数入门
sg[i]为0表示i节点先手必败. 首先定义mex(minimal excludant)运算,这是施加于一个集合的运算,表示最小的不属于这个集合的非负整数.例如mex{0,1,2,4}=3.mex{2 ...
- (巴什博弈 sg函数入门1) Brave Game -- hdu -- 1846
链接: http://acm.hdu.edu.cn/showproblem.php?pid=1846 首先来玩个游戏,引用杭电课件上的: (1) 玩家:2人:(2) 道具:23张扑克牌:(3) 规则: ...
- Light OJ 1199 - Partitioning Game (博弈sg函数)
D - Partitioning Game Time Limit:4000MS Memory Limit:32768KB 64bit IO Format:%lld & %llu ...
- 博弈论进阶之SG函数
SG函数 个人理解:SG函数是人们在研究博弈论的道路上迈出的重要一步,它把许多杂乱无章的博弈游戏通过某种规则结合在了一起,使得一类普遍的博弈问题得到了解决. 从SG函数开始,我们不再是单纯的同过找规律 ...
随机推荐
- 从零开始在centos搭建博客(二)
本篇为备份篇. 因为装的东西不多,所以需要备份的只有mysql和wordpress的文件夹. 备份mysql mysql备份命令 使用mysqldump命令,格式如下: # 这是格式 mysqldum ...
- HashSet存储自定义数据类型和LinkedHashSet集合
HashSet存储自定义数据类型 public class Test{ /** * HashSet存储自定义数据类型 * set集合保证元素唯一:存储的元素(String,Integer,Studen ...
- linux常见命令(十)
cut/grep/sort/uniq/wc 连续执行多个命令--;进入/data新建data01目录,在data01目录新建test.txtcd /data;mkdir data01;cd data0 ...
- 抖音 滑块验证方案 s_v_web_id 参数分析
本文所有教程及源码.软件仅为技术研究.不涉及计算机信息系统功能的删除.修改.增加.干扰,更不会影响计算机信息系统的正常运行.不得将代码用于非法用途,如侵立删! 抖音web端 s_v_web_id 参数 ...
- 手把手教你springboot集成微信支付
20220727 最近要做一个微信小程序,需要微信支付,所以研究了下怎么在 java 上集成微信支付功能,特此记录下. 本文完整代码:点击跳转 准备工作 小程序开通微信支付 首先需要在微信支付的官网点 ...
- Luogu1601 A+B Problem (高精度加法)
蒟蒻复习了下高精 #include <iostream> #include <cstdio> #include <cstring> #include <alg ...
- Mysql 实现数据库读写分离
Amoeba+Mysql实现数据库读写分离 一.Amoeba 是什么 Amoeba(变形虫)项目,专注 分布式数据库 proxy 开发.座落与Client.DB Server(s)之间.对客户端透明. ...
- 认识Vue扩展插件
众所周知,在 Vue 开发中,实现一个功能可以有很多种方式可以选择,这依赖于 Vue 强大的功能(指令.混合.过滤.插件等),本文介绍一下插件的开发使用. Vue 插件 插件通常用来为 Vue 添加全 ...
- Go语言Tips
时间日期格式化 time.Now().Format("2006-01-02") 原生DefaultServeMux支持restful路由 ref: https://towardsd ...
- Java核心知识体系4:AOP原理和切面应用
1 概述 我们所说的Aop(即面向切面编程),即面向接口,也面向方法,在基于IOC的基础上实现. Aop最大的特点是对指定的方法进行拦截并增强,这种增强的方式不需要业务代码进行调整,无需侵入到业务代码 ...