【简介】

解决LCA问题的Tarjan算法利用并查集在一次DFS(深度优先遍历)中完成所有询问。换句话说,要所有询问都读入后才开始计算,所以是一种离线的算法。

【原理】

先来看这样一个性质:当两个节点(u,v)的最近公共祖先是x时,那么我们可以确定的说,当进行后序遍历的时候,必然先访问完x的所有子树,其中包含u、v,然后才会返回到x所在的节点。这个性质就是我们使用Tarjan算法解决最近公共祖先问题的核心思想。

如上图所示,找出根节点到u得关键路径P ,已遍历的点位于路径P中某个点的子树中,当遍历到u时v已遍历过(u的子树已遍历完),那么v必然存在于子树pk中,此时LCA(u,v)就等于现在v所在集合的祖先pk。如果还没有遍历到,则继续遍历,只不过LCA(u,v)要等到遍历到v时才能知道了,原理如上。需要注意的一点是,为了保持上图的性质,如果一个节点的一个子树遍历完了,需要合并该节点的子树集合。

tarjan算法的步骤是(当dfs到节点u时):

(一) 在并查集中建立仅有u的集合,设置该集合的祖先为u
      (二) 对u的每个孩子v:
                  1. tarjan之
                  2. 合并v到父节点u的集合,确保集合的祖先是u
      (三)设置u为已遍历
      (四)处理关于u的查询,若查询(u,v)中的v已遍历过,则LCA(u,v)=  v所在的集合的祖先

【举例】

假设遍历完10的孩子,要处理关于10的请求了
取根节点到当前正在遍历的节点的路径为关键路径,即1-3-8-10
集合的祖先便是关键路径上距离集合最近的点
比如此时:
    【1,2,5,6】为一个集合,祖先为1,集合中点和10的LCA为1
    【3,7】为一个集合,祖先为3,集合中点和10的LCA为3
    【8,9,11】为一个集合,祖先为8,集合中点和10的LCA为8
    【10,12】为一个集合,祖先为10,集合中点和10的LCA为10

可以发现集合的祖先便是LCA !

【HDU 2586】

换成Tarjan 离线算法来做。

 #pragma comment(linker, "/STACK:1024000000,1024000000")
#include <stdio.h>
#include <string.h>
#include <vector>
#include <cmath>
using namespace std;
int n,m;
struct edge
{
int d,v,next;
edge(){}
edge(int _d,int _v,int _next)
{
d=_d;v=_v;next=_next;
}
}data[];
int map[];
int pool;
void addedge(int s,int e,int v)
{
int t=map[s];
data[pool++]=edge(e,v,t);
map[s]=pool-;
}
int mset[];
int find(int k)
{
if (mset[k]==-) return k;
return mset[k]=find(mset[k]);
}
void uion(int a,int b)
{
int aa=find(a);
int bb=find(b);
mset[aa]=bb;
}
struct _que
{
int a,b;
_que(int q=,int w=){a=q;b=w;}
};
vector<vector<_que> > ques;
vector<int > ans;
int ifv[];
int dis[];
int anc[];
void tar(int cur)
{
ifv[cur]=;
anc[cur]=cur;
int p=map[cur];
while (p!=-)
{
if (!ifv[data[p].d])
{
dis[data[p].d]=dis[cur]+data[p].v;
tar(data[p].d);
uion(cur,data[p].d);
anc[find(cur)]=cur;
}
p=data[p].next;
}
ifv[cur]=;
for (int i=;i<(int)ques[cur].size();++i)
{
if (ifv[ques[cur][i].a]==)
ans[ques[cur][i].b]=dis[cur]+dis[ques[cur][i].a]-*dis[anc[find(ques[cur][i].a)]];
}
}
int main()
{
int T;
scanf("%d",&T);
while (T--)
{
ques.clear();
pool=;
memset(map,-,sizeof map);
memset(ifv,,sizeof ifv);
memset(mset,-,sizeof mset);
scanf("%d%d",&n,&m);
ques.resize(n);
int s,e,v;
for (int i=;i<n-;++i)
{
scanf("%d%d%d",&s,&e,&v);
addedge(s-,e-,v);
addedge(e-,s-,v);
}
dis[]=;
ans.resize(m);
for (int i=;i<m;++i)
{
int u,v;
scanf("%d%d",&u,&v);
--u;--v;
ques[u].push_back(_que(v,i));
ques[v].push_back(_que(u,i));
}
tar();
for (int i=;i<(int)ans.size();++i)
{
printf("%d\n",ans[i]);
}
}
}

最近公共祖先LCA Tarjan 离线算法的更多相关文章

  1. LCA最近公共祖先(Tarjan离线算法)

    这篇博客对Tarjan算法的原理和过程模拟的很详细. 转载大佬的博客https://www.cnblogs.com/JVxie/p/4854719.html 第二次更新,之前转载的博客虽然胜在详细,但 ...

  2. LCA(最近公共祖先)--tarjan离线算法 hdu 2586

    HDU 2586 How far away ? Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/ ...

  3. POJ 1470 Closest Common Ancestors (最近公共祖先LCA 的离线算法Tarjan)

    Tarjan算法的详细介绍,请戳: http://www.cnblogs.com/chenxiwenruo/p/3529533.html #include <iostream> #incl ...

  4. POJ1470Closest Common Ancestors 最近公共祖先LCA 的 离线算法 Tarjan

    该算法的详细解释请戳: http://www.cnblogs.com/Findxiaoxun/p/3428516.html #include<cstdio> #include<alg ...

  5. 最近公共祖先LCA(Tarjan算法)的思考和算法实现

    LCA 最近公共祖先 Tarjan(离线)算法的基本思路及其算法实现 小广告:METO CODE 安溪一中信息学在线评测系统(OJ) //由于这是第一篇博客..有点瑕疵...比如我把false写成了f ...

  6. 最近公共祖先LCA(Tarjan算法)的思考和算法实现——转载自Vendetta Blogs

    LCA 最近公共祖先 Tarjan(离线)算法的基本思路及其算法实现 小广告:METO CODE 安溪一中信息学在线评测系统(OJ) //由于这是第一篇博客..有点瑕疵...比如我把false写成了f ...

  7. HDU-2586-How far away(LCA Tarjan离线算法)

    链接:https://vjudge.net/problem/HDU-2586 题意: 勇气小镇是一个有着n个房屋的小镇,为什么把它叫做勇气小镇呢,这个故事就要从勇气小镇成立的那天说起了,修建小镇的时候 ...

  8. 最近公共祖先 LCA Tarjan算法

    来自:http://www.cnblogs.com/ylfdrib/archive/2010/11/03/1867901.html 对于一棵有根树,就会有父亲结点,祖先结点,当然最近公共祖先就是这两个 ...

  9. HihoCoder 1067 最近公共祖先(ST离线算法)

    最近公共祖先·二 时间限制:10000ms 单点时限:1000ms 内存限制:256MB 描述 上上回说到,小Hi和小Ho用非常拙劣——或者说粗糙的手段山寨出了一个神奇的网站,这个网站可以计算出某两个 ...

随机推荐

  1. heat launch an instance

    在包含Orchestration服务的环境中,可以创建启动实例的堆栈 创建yam文件 heat_template_version: 2015-10-15 description: Launch a b ...

  2. inspect流程

    当node节点state为manage时,可执行inspector ironic node-set-provision-state <node_uuid> manage ironic no ...

  3. 转:sift算法详解

    转自:http://blog.csdn.net/pi9nc/article/details/23302075 对于初学者,从David G.Lowe的论文到实现,有许多鸿沟,本文帮你跨越. 1.SIF ...

  4. C++ 虚继承内存分配

    我们知道,虚继承的基类在类的层次结构中只可能出现一个实例.虚基类在类的层次结构中的位置是不能固定的,因为继承了虚基类的类可能会再次被其他类多继承. 比如class A: virtual T{} 这时T ...

  5. JZOJ 5280 膜法师

    好啰嗦......还好作者给了一句话题意,不然光看题就很耗费时间. 样例输入: 1 6 3 1 78 69 55 102 233 666 样例输出: 1 2 3 4 5 6 11  数据范围: 思路: ...

  6. [spoj] FTOUR2 FREE TOUR II || 树分治

    原题 给出一颗有n个点的树,其中有M个点是拥挤的,请选出一条最多包含k个拥挤的点的路径使得经过的权值和最大. 正常树分治,每次处理路径,更新答案. 计算每棵子树的deep(本题以经过拥挤节点个数作为d ...

  7. [codeforces] 498D Traffic Jams in th Land

    原题 简单的线段树问题. 对于题目中,a[i]的范围是2~6,我们仔细思考可以得出第0秒和第60秒是一样的(因为2~6的最小公倍数是60,),然后我们可以建一个线段树,里面记录0~59秒时刻开始通过这 ...

  8. 树上莫队 SPOJ COT2

    题意: 给一棵树,每次查询u到v路径上有多少不同的点权 首先需要证明这类题目符合区间加减性质 摘选一段vfk大牛的证明 用S(v, u)代表 v到u的路径上的结点的集合. 用root来代表根结点,用l ...

  9. JAVA本地文本读取---解决中文乱码

    import java.io.*; public class ReadFile { public static void main(String[] args) { try { File file = ...

  10. 【CF1023D】Array Restoration(构造,线段树)

    题意:有一个长为n的序列,对其进行q次操作,第i次操作可以把连续的一段覆盖为i 现在给出操作后的序列,第i个数字为a[i],其中有一些为0的位置可以为任意值,要求构造任意一组合法的操作后的序列 无解输 ...