一、Description

Problems in Computer Science are often classified as belonging to a certain class of problems (e.g., NP, Unsolvable, Recursive). In this problem you will be analyzing a property of an algorithm whose classification is not known
for all possible inputs.

Consider the following algorithm:


		1. 		 input n

		2. 		 print n

		3. 		 if n = 1 then STOP

		4. 		 		 if n is odd then   n <-- 3n+1

		5. 		 		 else   n <-- n/2

		6. 		 GOTO 2

Given the input 22, the following sequence of numbers will be printed 22 11 34 17 52 26 13 40 20 10 5 16 8 4 2 1



It is conjectured that the algorithm above will terminate (when a 1 is printed) for any integral input value. Despite the simplicity of the algorithm, it is unknown whether this conjecture is true. It has been verified, however, for all integers n such that
0 < n < 1,000,000 (and, in fact, for many more numbers than this.)



Given an input n, it is possible to determine the number of numbers printed before the 1 is printed. For a given n this is called the cycle-length of n. In the example above, the cycle length of 22 is 16.



For any two numbers i and j you are to determine the maximum cycle length over all numbers between i and j.




Input

The input will consist of a series of pairs of integers i and j, one pair of integers per line. All integers will be less than 10,000 and greater than 0.



You should process all pairs of integers and for each pair determine the maximum cycle length over all integers between and including i and j.

Output

For each pair of input integers i and j you should output i, j, and the maximum cycle length for integers between and including i and j. These three numbers should be separated by at least one space with all three numbers on one
line and with one line of output for each line of input. The integers i and j must appear in the output in the same order in which they appeared in the input and should be followed by the maximum cycle length (on the same line).

二、题解



       这题真正的核心部分其实非常水,但是他的输入数据和输出要求有陷阱。首先,输入的时候要计较i和j的大小,然后不要忘了输出的时候也要换过来。这题除了暴力解决以外,还可以用到记忆化存储方法打表。这里有不水的解法http://blog.csdn.net/xieshimao/article/details/6774759。
import java.util.Scanner; 

public class Main {
public static int getCycles(int m){
int sum=0;
while(m!=1){
if(m % 2==0){
m=m / 2;
sum++;
}else{
m=3*m+1;
sum++;
}
}
return sum+1;
}
public static void main(String[] args) {
Scanner cin = new Scanner(System.in);
int s,e,i;
while(cin.hasNext()){
s=cin.nextInt();
e=cin.nextInt();
boolean flag = false;
if(s > e){
int t=s;
s=e;
e=t;
flag=true;
}
int max=Integer.MIN_VALUE;
for(i=e;i>=s;i--){
int sum=getCycles(i);
if(sum>max)
max=sum;
}
if(flag){
System.out.println(e+" "+s+" "+max);
}else
System.out.println(s+" "+e+" "+max);
}
}
}

版权声明:本文为博主原创文章,未经博主允许不得转载。

Poj1207 The 3n + 1 problem(水题(数据)+陷阱)的更多相关文章

  1. hdu-5867 Water problem(水题)

    题目链接: Water problem Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Othe ...

  2. Codeforces - 1194B - Yet Another Crosses Problem - 水题

    https://codeforc.es/contest/1194/problem/B 好像也没什么思维,就是一个水题,不过蛮有趣的.意思是找缺黑色最少的行列十字.用O(n)的空间预处理掉一维,然后用O ...

  3. poj 1658 Eva's Problem(水题)

    一.Description Eva的家庭作业里有很多数列填空练习.填空练习的要求是:已知数列的前四项,填出第五项.因为已经知道这些数列只可能是等差或等比数列,她决定写一个程序来完成这些练习. Inpu ...

  4. poj-1207 THE 3n+1 problem

    Description Problems in Computer Science are often classified as belonging to a certain class of pro ...

  5. HDU 5832 A water problem 水题

    A water problem 题目连接: http://acm.hdu.edu.cn/showproblem.php?pid=5832 Description Two planets named H ...

  6. bestcoder 48# wyh2000 and a string problem (水题)

    wyh2000 and a string problem Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 131072/65536 K ...

  7. Codeforces Round #360 (Div. 2) C. NP-Hard Problem 水题

    C. NP-Hard Problem 题目连接: http://www.codeforces.com/contest/688/problem/C Description Recently, Pari ...

  8. Codeforces Round #603 (Div. 2) A. Sweet Problem 水题

    A. Sweet Problem the first pile contains only red candies and there are r candies in it, the second ...

  9. Codeforces Round #602 (Div. 2, based on Technocup 2020 Elimination Round 3) A. Math Problem 水题

    A. Math Problem Your math teacher gave you the following problem: There are n segments on the x-axis ...

随机推荐

  1. [笔记]我的Linux入门之路 - 02.***-Qt5配置

    作为一个学习中的程序员,查wiki等,***肯定是刚需.况且没有它很多东西都下不下来.我在windows环境下使用的是shadowsocks,那么在linux下也使用它. 一.SS版本 SS版本众多, ...

  2. 洛谷 2216 [HAOI2007]理想的正方形

    题目戳这里 一句话题意 给你一个a×b的矩形,求一个n×n的子矩阵,矩阵里面的最大值和最小值之差最小. Solution 这个题目许多大佬都是单调队列,但是我不是很会,只好用了比较傻逼的方法: 首先我 ...

  3. [luogu3359]改造异或树

    [luogu3359]改造异或树 luogu 和之前某道题类似只有删边的话考虑倒着加边 但是怎么统计答案呢? 我们考虑以任意点为根dfs一遍求出每个点到根的路径异或和s[i] 这样任意两点x,y的路径 ...

  4. centos7 使用 maven

    http://www.cnblogs.com/jackluo/archive/2013/02/06/2901816.html

  5. HDR(High Dynamic Range) - 高动态范围

    1. Dynamic Range 动态范围是指一个场景的最亮和最暗部分之间的相对比值   2. Tone-mapping 现实真正存在的亮度差,即最亮的物体亮度和最暗的物体亮度之比为 , 而人类的眼睛 ...

  6. [原创]java WEB学习笔记06:ServletContext接口

    本博客为原创:综合 尚硅谷(http://www.atguigu.com)的系统教程(深表感谢)和 网络上的现有资源(博客,文档,图书等),资源的出处我会标明 本博客的目的:①总结自己的学习过程,相当 ...

  7. Ansible Ad-Hoc命令集

    Ad-Hoc Ad-Hoc就是 “临时命令”, 从功能上讲 Ad-Hoc跟Ansible-playbook都差不多,Ansible提供了两种完成任务的方式: Ad-Hoc命令集与Ansible-pla ...

  8. Kafka- Spark消费Kafka

    在高版本的API中 val brokers = properties.getProperty("kafka.host.list") val topics = Set(propert ...

  9. Openldap- 大机群身份验证服务

    无论在哪个行业,数据安全永远都是摆在首要地位.尤其是在大数据行业上,谁掌握了数据,谁就有可能成为下个亿万富豪的环境中,数据安全更为重要.大数据的安全可以从哪些地方入手,首先可以在身份验证上面入手.在大 ...

  10. el表达式判断字符串相等

    el表达式判断字符串相等 Java code 1 ${"a" == "a"}  ${"b" eq "b"}  都可以 & ...