机器学习2—K近邻算法学习笔记
Python3.6.3下修改代码中def classify0(inX,dataSet,labels,k)函数的classCount.iteritems()为classCount.items(),另外print在Python新版本下是函数,print后面需加上一对括号,否则执行会报错。
import numpy as np
#用于分类的输入向量是inX,输入的训练样本集为dataSet,
#标签向量为 labels ,最后的参数 k 表示用于选择最近邻居的数目,其中标签向量的元素数目和矩
#阵 dataSet 的行数相同。
def classify0(inX,dataSet,labels,k):
# 获取 数组 形状的 第一个 参数 a=[[1,2],[1,2],[1,2]] a.shape = [3,2] a.shape[0] = 3
# 一、
dataSetSize = dataSet.shape[0]
# tile 代表了inX,复制为dataSetSize行,1列的数组
# 二、
diffMat = np.tile(inX,(dataSetSize,1))-dataSet
# 平方
sqDiffMat = diffMat**2
# axis 等于 1 是将 矩阵的每一行 相加
sqDistances = sqDiffMat.sum(axis=1)
# 开方
distances = sqDistances**0.5
# 三、
# 从小到大 排列,argsort : 将distacnces中的元素从小到大排列,提取其对应的index(索引),然后输出到sortedDistances
sortedDistances = distances.argsort()
classCount = {}
# 四、求出来 最低距离 的 labels结果,存放在classCount 中
for i in range(k):
#取第i+1个邻近的样本对应的类别标签
voteIlabel =labels[sortedDistances[i]]
#以标签为key,标签出现的次数为value将统计到的标签及出现次数写进字典
classCount[voteIlabel] = classCount.get(voteIlabel,0)+1
#对字典按value从大到小排序
sortedClassCount = sorted(classCount.items(),key=operator.itemgetter(1),reverse=True)
#返回排序后字典中最大value对应的key
return sortedClassCount[0][0]
#将文本记录转换为Numpy的解析程序
def file2matrix(filename): fr=open(filename) #打开文件 arrayOLines=fr.readlines() #获取文件所有行 numberOfLines=len(arrayOLines) #得到文件行数 returnMat=zeros((numberOfLines,3)) #先用零元素创建需要返回的numpy矩阵,(行数,列数) classLabelVector=[] # 创建空的标签列表 index=0 for line in arrayOLines: line=line.strip() #截取掉尾部的回车字符 listFromLine=line.split('\t') #用‘\t’作为分隔符将整行元素分割成元素列表,将一行数据按空进行分割, returnMat[index,:]=listFromLine[0:3] #选取列表前三个元素到=矩阵中 classLabelVector.append(listFromLine[-1]) #将列表的最后一列存储到向量中 index += 1 return returnMat,classLabelVector #返回数据集矩阵和对应的标签向量
#归一化特征值
def autoNorm(dataSet): minVals = dataSet.min(0) #找到数据集中的最小值(实际上应该是样本数据中的一列中的最小值,参数0就代表这个,下同),这样说的话minVals和maxVals都应该是一个行向量(1*n) maxVals = dataSet.max(0) #找到数据集中的最大值 ranges = maxVals - minVals #得到数据的范围差值 normDataSet = zeros(shape(dataSet)) # 定义空的要返回的归一化后的矩阵,该矩阵和传入的数据集是一样的大小 m = dataSet.shape[0] #得到矩阵第一行的数据个数,也就是维数 normDataSet = dataSet - tile(minVals, (m,1)) #数据集与最小值相减(title()函数将按照括号中的参数制作对应大小的矩阵,用给定的minVals内容来填充 normDataSet = normDataSet/tile(ranges, (m,1)) #除以范围值之后就是归一化的值了。(注意是矩阵除法) return normDataSet, ranges, minVals
#分类器针对约会网站的测试代码
def datingClassTest(): hoRatio = 0.10 #测试所占的比例 datingDataMat,datingLabels = file2matrix('datingTestSet2.txt') #将文件中的数据转换为矩阵形式和提取出标签矩阵 normMat, ranges, minVals = autoNorm(datingDataMat) #对提取出的矩阵数据归一化处理 m = normMat.shape[0] #获得数据总的条数 numTestVecs = int(m*hoRatio) #得出作为测试的数据个数 errorCount = 0.0 #初始化错误个数为0 for i in range(numTestVecs): #对测试的数据进行遍历 classifierResult = classify0(normMat[i,:],normMat[numTestVecs:m,:],datingLabels[numTestVecs:m],3) # 对数据进行分类 print("the classifier came back with: %s, the real answer is: %s" % (classifierResult, datingLabels[i])) #输出分类结果和实际的类别(之前的代码有问题啊,要将%d,改为%s) if (int(classifierResult) != int(datingLabels[i])): errorCount += 1.0 # 如果分类结果与实际结果不一致 ,错误数加1 print("the total error rate is: %f" % (errorCount/float(numTestVecs))) # 输出错误率 print(errorCount) #输出错误总数
#约会网站预测函数
def classiyPerson(): resultList = ['not at all','in small doses','in large doses'] # 定义分类结果的类别 percentTats = float(raw_input("percentage of time spent playing video games?")) # 读取输入数据 ffMiles = float(raw_input("frequent flier miles earned per year?")) # 读取输入数据 iceCream = float(raw_input("liters of ice cream consumed per year?")) # 读取输入数据 datingDataMat,datingLabels = file2matrix('datingTestSet2.txt') # 从文件中读取已有数据 normMat,ranges,minVals = autoNorm(datingDataMat) # 对数据进行归一化 inArr =array([ffMiles,percentTats,iceCream]) # 将单个输入数据定义成一条数据 classifierResult = classify0(inArr,datingDataMat,datingLabels,3) # 对输入数据进行分类 print('You will probably like this person: %s' % (resultList[int(classifierResult) - 1])) # 输出预测的分类类别
# 将单个手写字符文件变成向量
def img2vector(filename): returnVect = zeros((1,1024)) #创建要返回的1*1024的矩阵并初始化为0 fr = open(filename) # 打开文件 for i in range(32): #从0到31行遍历 lineStr = fr.readline() #读取一行(自动成为一个列表) for j in range(32): #从0到31列 returnVect[0,32*i+j] = int(lineStr[j]) #将一行中的每个元素复制到要返回的矩阵中 return returnVect #返回该1*1024的矩阵
# 手写字符识别测试
def handwritingClassTest(): hwLabels = [] # 定义手写字符标签(类别) trainingFileList = listdir('trainingDigits') # 列出目录下所有的文件 m = len(trainingFileList) # 计算训练文件的数目 trainingMat = zeros((m,1024)) # 定义手写字符数据矩阵 for i in range(m): # 依次读取每个文件 fileNameStr = trainingFileList[i] # 依次获得文件名 fileStr = fileNameStr.split('.')[0] # 对文件名进行分割 classNumStr = int(fileStr.split('_')[0]) # 获得文件名中的类标签 hwLabels.append(classNumStr) # 把类标签放到hwLabels中 trainingMat[i,:] = img2vector('trainingDigits/%s' % fileNameStr) # 把文件变成向量并赋值到trainingMat这个矩阵中 testFileList = listdir('testDigits') # 列出测试目录下的所有文件 errorCount = 0.0 # 定义错误数 mTest = len(testFileList) # 获得测试文件数目 for i in range(mTest): # 遍历测试文件 fileNameStr = testFileList[i] # 定义测试文件名 fileStr = fileNameStr.split('.')[0] # 对测试文件名进行分割 classNumStr = int(fileStr.split('_')[0]) # 获得测试文件的类标签 vectorUnderTest = img2vector('testDigits/%s' % fileNameStr) # 将测试文件转换成向量 classifierResult = classify0(vectorUnderTest, trainingMat, hwLabels, 3) # 进行分类 print("the classifier came back with: %d, the real answer is: %d" % (int(classifierResult), int(classNumStr))) # 输出预测类别和实际类别 if (int(classifierResult) != int(classNumStr)): errorCount += 1.0 # 如果二者不一致,累加错误数量 print("\nthe total number of errors is: %d" % errorCount) # 输出分类错误的数目 print("\nthe total error rate is: %f" % (errorCount/float(mTest))) # 输出分类的错误率
第二章代码修改如下:
from numpy import *
import operator
from os import listdir def classify0(inX, dataSet, labels, k):
dataSetSize = dataSet.shape[0]
diffMat = tile(inX, (dataSetSize,1)) - dataSet
sqDiffMat = diffMat**2
sqDistances = sqDiffMat.sum(axis=1)
distances = sqDistances**0.5
sortedDistIndicies = distances.argsort()
classCount={}
for i in range(k):
voteIlabel = labels[sortedDistIndicies[i]]
classCount[voteIlabel] = classCount.get(voteIlabel,0) + 1
sortedClassCount = sorted(classCount.items(), key=operator.itemgetter(1), reverse=True)
return sortedClassCount[0][0] def createDataSet():
group = array([[1.0,1.1],[1.0,1.0],[0,0],[0,0.1]])
labels = ['A','A','B','B']
return group, labels def file2matrix(filename):
fr = open(filename)
numberOfLines = len(fr.readlines()) #get the number of lines in the file
returnMat = zeros((numberOfLines,3)) #prepare matrix to return
classLabelVector = [] #prepare labels return
fr = open(filename)
index = 0
for line in fr.readlines():
line = line.strip()
listFromLine = line.split('\t')
returnMat[index,:] = listFromLine[0:3]
classLabelVector.append(int(listFromLine[-1]))
index += 1
return returnMat,classLabelVector def autoNorm(dataSet):
minVals = dataSet.min(0)
maxVals = dataSet.max(0)
ranges = maxVals - minVals
normDataSet = zeros(shape(dataSet))
m = dataSet.shape[0]
normDataSet = dataSet - tile(minVals, (m,1))
normDataSet = normDataSet/tile(ranges, (m,1)) #element wise divide
return normDataSet, ranges, minVals def datingClassTest():
hoRatio = 0.50 #hold out 10%
datingDataMat,datingLabels = file2matrix('datingTestSet2.txt') #load data setfrom file
normMat, ranges, minVals = autoNorm(datingDataMat)
m = normMat.shape[0]
numTestVecs = int(m*hoRatio)
errorCount = 0.0
for i in range(numTestVecs):
classifierResult = classify0(normMat[i,:],normMat[numTestVecs:m,:],datingLabels[numTestVecs:m],3)
print("the classifier came back with: %d, the real answer is: %d" % (classifierResult, datingLabels[i]))
if (classifierResult != datingLabels[i]): errorCount += 1.0
print("the total error rate is: %f" % (errorCount/float(numTestVecs)))
print(errorCount) def img2vector(filename):
returnVect = zeros((1,1024))
fr = open(filename)
for i in range(32):
lineStr = fr.readline()
for j in range(32):
returnVect[0,32*i+j] = int(lineStr[j])
return returnVect def handwritingClassTest():
hwLabels = []
trainingFileList = listdir('trainingDigits') #load the training set
m = len(trainingFileList)
trainingMat = zeros((m,1024))
for i in range(m):
fileNameStr = trainingFileList[i]
fileStr = fileNameStr.split('.')[0] #take off .txt
classNumStr = int(fileStr.split('_')[0])
hwLabels.append(classNumStr)
trainingMat[i,:] = img2vector('trainingDigits/%s' % fileNameStr)
testFileList = listdir('testDigits') #iterate through the test set
errorCount = 0.0
mTest = len(testFileList)
for i in range(mTest):
fileNameStr = testFileList[i]
fileStr = fileNameStr.split('.')[0] #take off .txt
classNumStr = int(fileStr.split('_')[0])
vectorUnderTest = img2vector('testDigits/%s' % fileNameStr)
classifierResult = classify0(vectorUnderTest, trainingMat, hwLabels, 3)
print("the classifier came back with: %d, the real answer is: %d" % (classifierResult, classNumStr))
if (classifierResult != classNumStr): errorCount += 1.0
print("\nthe total number of errors is: %d" % errorCount)
print("\nthe total error rate is: %f" % (errorCount/float(mTest)))
机器学习2—K近邻算法学习笔记的更多相关文章
- 机器学习之K近邻算法(KNN)
机器学习之K近邻算法(KNN) 标签: python 算法 KNN 机械学习 苛求真理的欲望让我想要了解算法的本质,于是我开始了机械学习的算法之旅 from numpy import * import ...
- 【机器学习】k近邻算法(kNN)
一.写在前面 本系列是对之前机器学习笔记的一个总结,这里只针对最基础的经典机器学习算法,对其本身的要点进行笔记总结,具体到算法的详细过程可以参见其他参考资料和书籍,这里顺便推荐一下Machine Le ...
- 第四十六篇 入门机器学习——kNN - k近邻算法(k-Nearest Neighbors)
No.1. k-近邻算法的特点 No.2. 准备工作,导入类库,准备测试数据 No.3. 构建训练集 No.4. 简单查看一下训练数据集大概是什么样子,借助散点图 No.5. kNN算法的目的是,假如 ...
- 机器学习之K近邻算法
K 近邻 (K-nearest neighbor, KNN) 算法直接作用于带标记的样本,属于有监督的算法.它的核心思想基本上就是 近朱者赤,近墨者黑. 它与其他分类算法最大的不同是,它是一种&quo ...
- 机器学习实战-k近邻算法
写在开头,打算耐心啃完机器学习实战这本书,所用版本为2013年6月第1版 在P19页的实施kNN算法时,有很多地方不懂,遂仔细研究,记录如下: 字典按值进行排序 首先仔细读完kNN算法之后,了解其是用 ...
- 【机器学习】K近邻算法——多分类问题
给定一个训练数据集,对新的输入实例,在训练数据集中找到与该实例最邻近的K个实例,这K个实例的多数属于某个类,就把该类输入实例分为这个类. KNN是通过测量不同特征值之间的距离进行分类.它的的思路是:如 ...
- 机器学习03:K近邻算法
本文来自同步博客. P.S. 不知道怎么显示数学公式以及排版文章.所以如果觉得文章下面格式乱的话请自行跳转到上述链接.后续我将不再对数学公式进行截图,毕竟行内公式截图的话排版会很乱.看原博客地址会有更 ...
- 02-16 k近邻算法
目录 k近邻算法 一.k近邻算法学习目标 二.k近邻算法引入 三.k近邻算法详解 3.1 k近邻算法三要素 3.1.1 k值的选择 3.1.2 最近邻算法 3.1.3 距离度量的方式 3.1.4 分类 ...
- 机器学习实战 - python3 学习笔记(一) - k近邻算法
一. 使用k近邻算法改进约会网站的配对效果 k-近邻算法的一般流程: 收集数据:可以使用爬虫进行数据的收集,也可以使用第三方提供的免费或收费的数据.一般来讲,数据放在txt文本文件中,按照一定的格式进 ...
随机推荐
- 收纳箱1号 | GitHub Pages部署静态网页的一点私货
Static site 总结各种各有的 static site generator Jekyll 其实是一个 static site generator. 如果你去 Google 这个,会发现有很多总 ...
- oracle wm_concat 拼接乱码 显示问号等
今天用plsql查询工具 拼接sql查询显示乱码,不知道为何. 后来经多方查找资料 现在分享如下. 针对oracle拼接函数的乱码,首先查询一下oracle字符的编码是否支持中文,查询语句: SELE ...
- How to: Launch the Debugger Automatically
Sometimes, you may need to debug the startup code for an application that is launched by another pro ...
- 【spring boot】【mybatis】spring boot中mybatis打印sql语句
spring boot中mybatis打印sql语句,怎么打印出来?[参考:https://www.cnblogs.com/sxdcgaq8080/p/9100178.html] 在applicati ...
- MVC流程图
MVC请求流程图 一 MVC流程图 二 流程步骤 客户端浏览器发送请求到MVC应用程序. Global.ascx接收这个请求,并且执行基于使用RouteTable,RouteData,UrlRouti ...
- 代码验证C#执行”文件打开关闭操作“耗时
2017-04-19 部门经理习惯用C#做数据清洗,遇到个需要验证的问题,在一个万次左右循环内对文件执行打开关闭操作,比在循环前打开文件.循环后关闭文件耗时多多少. using System; usi ...
- zabbix低级自动发现之mysql多实例
1.低级自动发现概述 zabbix的低级自动发现(LLD)适用于监控多实例,监控变化的数据(分区.网卡). 自动发现(LLD)提供了一种在计算机上为不同实体自动创建监控项,触发器和图形的方法.例如,Z ...
- 飘逸的python - 实现一个pretty函数美丽的输出嵌套字典
演示样例: d = { "root": { "folder2": { "item2": None, "item1": N ...
- mother's day.py 母亲节
今天母亲节,写了个程序.抓取一个站点的母亲节祝福短信.实现自己主动翻页, 道友们也能够甲乙改造.比方加上节日简洁,time()模块. . . 一起分享吧 # -*- coding: cp936 -*- ...
- Android学习(七) Android实现计算器
前台页面代码,通过线性布局方式实现计算器页面:如图所示 color.xml,自定义颜色values: <?xml version="1.0" encoding="u ...