POJ:1258-Agri-Net
Agri-Net
Time Limit: 1000MS Memory Limit: 10000K
Total Submissions: 65322 Accepted: 27029
Description
Farmer John has been elected mayor of his town! One of his campaign promises was to bring internet connectivity to all farms in the area. He needs your help, of course.
Farmer John ordered a high speed connection for his farm and is going to share his connectivity with the other farmers. To minimize cost, he wants to lay the minimum amount of optical fiber to connect his farm to all the other farms.
Given a list of how much fiber it takes to connect each pair of farms, you must find the minimum amount of fiber needed to connect them all together. Each farm must connect to some other farm such that a packet can flow from any one farm to any other farm.
The distance between any two farms will not exceed 100,000.
Input
The input includes several cases. For each case, the first line contains the number of farms, N (3 <= N <= 100). The following lines contain the N x N conectivity matrix, where each element shows the distance from on farm to another. Logically, they are N lines of N space-separated integers. Physically, they are limited in length to 80 characters, so some lines continue onto others. Of course, the diagonal will be 0, since the distance from farm i to itself is not interesting for this problem.
Output
For each case, output a single integer length that is the sum of the minimum length of fiber required to connect the entire set of farms.
Sample Input
4
0 4 9 21
4 0 8 17
9 8 0 16
21 17 16 0
Sample Output
28
解题心得:
- 一个裸的最小生成树,只不过给你的距离表达式是个矩阵。
#include <stdio.h>
#include <algorithm>
#include <cstring>
using namespace std;
const int maxn = 110;
int n,father[maxn],tot;
struct Path {
int s,e,len;
}path[maxn*maxn];
int find(int x) {
if(x == father[x])
return x;
return father[x] = find(father[x]);
}
void merge(int x,int y) {
int fx = find(x);
int fy = find(y);
father[fx] = fy;
}
bool cmp(Path a,Path b) {
return a.len < b.len;
}
void init() {
tot = 0;
for(int i=0;i<n;i++) {
father[i] = i;
for (int j = 0; j < n; j++) {
int temp;
scanf("%d", &temp);
path[tot].s = i;
path[tot].e = j;
path[tot++].len = temp;
}
}
sort(path,path+tot,cmp);
}
int main() {
while(scanf("%d",&n) != EOF) {
init();
int ans = 0;
for(int i=0;i<tot;i++){
if(find(path[i].s) != find(path[i].e)) {
ans += path[i].len;
merge(path[i].s,path[i].e);
}
}
printf("%d\n",ans);
}
return 0;
}
POJ:1258-Agri-Net的更多相关文章
- poj:4091:The Closest M Points
poj:4091:The Closest M Points 题目 描写叙述 每到饭点,就又到了一日几度的小L纠结去哪吃饭的时候了.由于有太多太多好吃的地方能够去吃,而小L又比較懒不想走太远,所以小L会 ...
- POJ:1182 食物链(带权并查集)
http://poj.org/problem?id=1182 Description 动物王国中有三类动物A,B,C,这三类动物的食物链构成了有趣的环形.A吃B, B吃C,C吃A. 现有N个动物,以1 ...
- POJ:2229-Sumsets(完全背包的优化)
题目链接:http://poj.org/problem?id=2229 Sumsets Time Limit: 2000MS Memory Limit: 200000K Total Submissio ...
- POJ:3126-Prime Path
题目链接:http://poj.org/problem?id=3126 Prime Path Time Limit: 1000MS Memory Limit: 65536K Total Submiss ...
- POJ:2429-GCD & LCM Inverse(素数判断神题)(Millar-Rabin素性判断和Pollard-rho因子分解)
原题链接:http://poj.org/problem?id=2429 GCD & LCM Inverse Time Limit: 2000MS Memory Limit: 65536K To ...
- POJ :3614-Sunscreen
传送门:http://poj.org/problem?id=3614 Sunscreen Time Limit: 1000MS Memory Limit: 65536K Total Submissio ...
- POJ:2377-Bad Cowtractors
传送门:http://poj.org/problem?id=2377 Bad Cowtractors Time Limit: 1000MS Memory Limit: 65536K Total Sub ...
- POJ:2139-Six Degrees of Cowvin Bacon
传送门:http://poj.org/problem?id=2139 Six Degrees of Cowvin Bacon Time Limit: 1000MS Memory Limit: 6553 ...
- POJ:1017-Packets(贪心+模拟,神烦)
传送门:http://poj.org/problem?id=1017 Packets Time Limit: 1000MS Memory Limit: 10000K Total Submissions ...
- POJ:3190-Stall Reservations
传送门:http://poj.org/problem?id=3190 Stall Reservations Time Limit: 1000MS Memory Limit: 65536K Total ...
随机推荐
- rem与em的区别
这两个单位都是相对元素 rem相对根元素 em相对于父级元素
- Wallet address
BCX XZVYYwXFAJwv6x4KTssQxJb4EReVdCBnpb BCD 1DNSFUD7LURZdmbckkQcxMvinNJ26mVcNH
- Bootstrap开发
1.BootStrap开发工具 任意前端工具 专门Bootstrap工具:Jetstrap(下载地址:jetstrap.com) 2.官网: www.bootcss.com(“下载Bootstrap” ...
- Python基础学习之序列(2)
通用序列操作 所有序列类型都可以进行某些特定的操作.这些操作包括:索引(indexing).分片(sliceing).加(adding).乖(multiplying)以及检查某个元素是否属于序列的成员 ...
- April 24 2017 Week 17 Monday
Much effort, much prosperity. 越努力,越幸运. I have ever seen this sentence in many people's signature of ...
- NutDao配置多数据源
首先,我必须声明,这是一个非常简单的方法,很多小菜没做出来,是因为把nutz想得太复杂 数据源(或者是数据库连接池),在Nutz.Ioc看来,是一个普通的Bean,没任何特别之处. 再强调一点,除了$ ...
- 2017.9.29 web网上答题及其自动评测系统
1. 设计计一个网上答题及其自动评测系统,首先是试题页面的设计及其解答的提交, 其次是当提交解答之后,系统自动评阅并给出结果. 分析:需要两个jsp页面:一个是提交信息的页面,另一个是获取提交信息的页 ...
- npy数据的保存与读取
保存 利用这种方法,保存文件的后缀名字一定会被置为.npy x = numpy.save("data_x.npy",x) 读取 data = numpy.load("da ...
- MongoDB在MFC下使用C++驱动编译错误的解决
.post p{text-indent: 2em;} 今天使用MongoDB的C++驱动,在编译连接的时候一直出现错误,显示的string_data.h下93行max宏的问题,可视其本身并不是调用ma ...
- java重定向与请求转发
重定向是不能直接访问WEB-INF下的资源的,因为重定向是浏览器二次请求,众所周知,客户端是不能直接访问WEB-INF下的资源的. 而请求转发却可以直接访问. 然而重定向却可以间接访问WEN-INF下 ...