u

题目背景

\(\frac 14\) 遇到了一道水题,完全不会做,于是去请教小\(\text{D}\)。小\(\text{D}\)看了一眼就切掉了这题,嘲讽了\(\frac 14\)一番就离开了。

于是,\(\frac 14\)只好来问你,这道题是这样的:

题目描述

考虑一个\(n\times n\)的矩阵\(A\),初始所有元素均为\(0\)。

执行\(q\)次如下形式的操作:给定\(4\)个整数\(r,c,l,s\),对于每个满足\(x\in [r,r+l),y\in [c,x-r+c]\)的元素\((x,y)\),将权值增加\(s\)。也就是,给一个左上顶点为\((r,c)\)、直角边长为\(l\)的下三角区域加上\(s\)。

输出最终矩阵的元素异或和。

输出输出格式

输入格式

从文件u.in 中读入数据。

第一行两个整数\(n,q\)。

接下来\(q\)行,每行四个整数\(r,c,l,s\),代表一次操作。

输出格式

输出到文件u.out 中。

输出一行,一个整数,代表答案。

数据范围

保证\(n\in [1,10^3]\),\(q\in [0,3\times 10^5]\),\(r,c,l\in [1,n]\),\(s\in [1,10^9]\)。

\(\text{Subtask}\) 分值 \(n\le\) \(q\le\) 其他限制
\(1\) \(1\) \(10^3\) \(0\)
\(2\) \(19\) \(3\times 10^2\) \(4\times 10^2\)
\(3\) \(27\) \(10^3\) \(2\times 10^3\)
\(4\) \(14\) \(10^3\) \(3\times 10^5\) 保证\(r+l=n+1\)且\(c=1\)
\(5\) \(17\) \(10^3\) \(3\times 10^5\) 保证\(r+l=n+1\)
\(6\) \(22\) \(10^3\) \(3\times 10^5\)

没有修改为啥不直接查分呢??

我居然只写了拿差分暴力的分。。

注意到改差分数组是改一个列和一个斜着的东西

然而这些都可以看做是连续的

于是可以维护差分数组的差分

最后才加回去


Code:


雅礼集训 Day3 T2 u 解题报告的更多相关文章

  1. 雅礼集训 Day3 T2 v 解题报告

    v 题目背景 \(\frac 14\)遇到了一道水题,又完全不会做,于是去请教小\(\text{D}\).小\(\text{D}\)看了\(0.607\)眼就切掉了这题,嘲讽了\(\frac 14\) ...

  2. 雅礼集训 Day3 T3 w 解题报告

    w 题目背景 \(\frac 14\)遇到了一道水题,双完全不会做,于是去请教小\(\text{D}\).小\(\text{D}\)看了\(0.607^2\)眼就切掉了这题,嘲讽了\(\frac 14 ...

  3. 雅礼集训 Day6 T2 Equation 解题报告

    Equation 题目描述 有一棵\(n\)个点的以\(1\)为根的树,以及\(n\)个整数变量\(x_i\).树上\(i\)的父亲是\(f_i\),每条边\((i,f_i)\)有一个权值\(w_i\ ...

  4. 「雅礼集训 2017 Day2」解题报告

    「雅礼集训 2017 Day2」水箱 我怎么知道这种题目都能构造树形结构. 根据高度构造一棵树,在树上倍增找到最大的小于约束条件高度的隔板,开一个 \(vector\) 记录一下,然后对于每个 \(v ...

  5. 「雅礼集训 2017 Day1」 解题报告

    「雅礼集训 2017 Day1」市场 挺神仙的一题.涉及区间加.区间除.区间最小值和区间和.虽然标算就是暴力,但是复杂度是有保证的. 我们知道如果线段树上的一个结点,\(max=min\) 或者 \( ...

  6. 雅礼集训 Day1 T3 画作 解题报告

    画作 题目描述 小\(\mathrm{G}\)的喜欢作画,尤其喜欢仅使用黑白两色作画. 画作可以抽象成一个\(r\times c\)大小的\(01\)矩阵.现在小\(\mathrm{G}\)构思好了他 ...

  7. 雅礼集训 Day7 T1 Equation 解题报告

    Reverse 题目背景 小\(\text{G}\)有一个长度为\(n\)的\(01\)串\(T\),其中只有\(T_S=1\),其余位置都是\(0\).现在小\(\text{G}\)可以进行若干次以 ...

  8. 雅礼集训 Day6 T1 Merchant 解题报告

    Merchant 题目描述 有\(n\)个物品,第\(i\)个物品有两个属性\(k_i,b_i\),表示它在时刻\(x\)的价值为\(k_i\times x+b_i\). 当前处于时刻\(0\),你可 ...

  9. 雅礼集训 Day5 T3 题 解题报告

    题 题目背景 由于出题人赶时间所以没办法编故事来作为背景. 题目描述 一开始有\(n\)个苹果,\(m\)个人依次来吃苹果,第\(i\)个人会尝试吃\(u_i\)或\(v_i\)号苹果,具体来说分三种 ...

随机推荐

  1. Java - 静态内部类

    Java语言允许在类中再定义类,这种在其它类内部定义的类就叫内部类.内部类又分为:常规内部类.局部内部类.匿名内部类和静态嵌套类四种. 1.静态内部类定义 静态内部类,定义在类中,任何方法外,用sta ...

  2. SpringMVC注解@RequestParam解析

    1.可以对传入参数指定参数名 1 @RequestParam String inputStr 2 // 下面的对传入参数指定为param,如果前端不传param参数名,会报错 3 @RequestPa ...

  3. LeetCode979. 在二叉树中分配硬币

    问题:979. 在二叉树中分配硬币 给定一个有 N 个结点的二叉树的根结点 root,树中的每个结点上都对应有 node.val 枚硬币,并且总共有 N 枚硬币. 在一次移动中,我们可以选择两个相邻的 ...

  4. Pagehelper介绍

    本文引自:https://my.oschina.net/zudajun/blog/745232 摘要: com.github.pagehelper.PageHelper是一款好用的开源免费的Mybat ...

  5. saltstack plug in

    目录 可插拔的子系统 灵活性 虚拟模块 salt的核心架构提供了一种高速的交流总线,在核心架构的上层,salt暴露出来的特征是:松散耦合,可插拔的子系统. 可插拔的子系统 salt包含20中插件系统, ...

  6. 9.3centos7安装python3 以及tab补全功能

    1.安装python3 1.1下载python源码包 网址:https://www.python.org/downloads/release/python-362/ 下载地址:https://www. ...

  7. .Net Mvc 4 Route路由

    1.前言 在创建一个MVC项目后就可以,在App_Start文件下的RouteConfig.cs里面就可以定义我们的路由规则,其中已经有默认的路由规则了,routes.IgnoreRoute是让路由规 ...

  8. SpringMVC---springMVC配置文件(springweb.xml)简介

    再web.xml中设置HTTP请求的中央调度处理器DispatcherServlet时,会指定SpringMVC配置文件,这里取名springweb.xml是因设置DispatcherServlet时 ...

  9. 统计大写字母个数&压缩和去重(过滤)

    找出给定字符串中大写字符(即'A'-'Z')的个数 接口说明 原型:int CalcCapital(String str); 返回值:int 知识点 字符串 运行时间限制 10M 内存限制 128 输 ...

  10. 安装完最小化 RHEL/CentOS 7 后需要做的 30 件事情(一)

    本文导航 -1. 注册并启用红帽订阅 -2. 使用静态 IP 地址配置网络 -3. 设置服务器的主机名称 -4. 更新或升级最小化安装的 CentOS -5. 安装命令行 Web 浏览器 -6. 安装 ...