雅礼集训 Day3 T2 u 解题报告
u
题目背景
\(\frac 14\) 遇到了一道水题,完全不会做,于是去请教小\(\text{D}\)。小\(\text{D}\)看了一眼就切掉了这题,嘲讽了\(\frac 14\)一番就离开了。
于是,\(\frac 14\)只好来问你,这道题是这样的:
题目描述
考虑一个\(n\times n\)的矩阵\(A\),初始所有元素均为\(0\)。
执行\(q\)次如下形式的操作:给定\(4\)个整数\(r,c,l,s\),对于每个满足\(x\in [r,r+l),y\in [c,x-r+c]\)的元素\((x,y)\),将权值增加\(s\)。也就是,给一个左上顶点为\((r,c)\)、直角边长为\(l\)的下三角区域加上\(s\)。
输出最终矩阵的元素异或和。
输出输出格式
输入格式
从文件u.in
中读入数据。
第一行两个整数\(n,q\)。
接下来\(q\)行,每行四个整数\(r,c,l,s\),代表一次操作。
输出格式
输出到文件u.out 中。
输出一行,一个整数,代表答案。
数据范围
保证\(n\in [1,10^3]\),\(q\in [0,3\times 10^5]\),\(r,c,l\in [1,n]\),\(s\in [1,10^9]\)。
\(\text{Subtask}\) | 分值 | \(n\le\) | \(q\le\) | 其他限制 |
---|---|---|---|---|
\(1\) | \(1\) | \(10^3\) | \(0\) | 无 |
\(2\) | \(19\) | \(3\times 10^2\) | \(4\times 10^2\) | 无 |
\(3\) | \(27\) | \(10^3\) | \(2\times 10^3\) | 无 |
\(4\) | \(14\) | \(10^3\) | \(3\times 10^5\) | 保证\(r+l=n+1\)且\(c=1\) |
\(5\) | \(17\) | \(10^3\) | \(3\times 10^5\) | 保证\(r+l=n+1\) |
\(6\) | \(22\) | \(10^3\) | \(3\times 10^5\) | 无 |
没有修改为啥不直接查分呢??
我居然只写了拿差分暴力的分。。
注意到改差分数组是改一个列和一个斜着的东西
然而这些都可以看做是连续的
于是可以维护差分数组的差分
最后才加回去
Code:
雅礼集训 Day3 T2 u 解题报告的更多相关文章
- 雅礼集训 Day3 T2 v 解题报告
v 题目背景 \(\frac 14\)遇到了一道水题,又完全不会做,于是去请教小\(\text{D}\).小\(\text{D}\)看了\(0.607\)眼就切掉了这题,嘲讽了\(\frac 14\) ...
- 雅礼集训 Day3 T3 w 解题报告
w 题目背景 \(\frac 14\)遇到了一道水题,双完全不会做,于是去请教小\(\text{D}\).小\(\text{D}\)看了\(0.607^2\)眼就切掉了这题,嘲讽了\(\frac 14 ...
- 雅礼集训 Day6 T2 Equation 解题报告
Equation 题目描述 有一棵\(n\)个点的以\(1\)为根的树,以及\(n\)个整数变量\(x_i\).树上\(i\)的父亲是\(f_i\),每条边\((i,f_i)\)有一个权值\(w_i\ ...
- 「雅礼集训 2017 Day2」解题报告
「雅礼集训 2017 Day2」水箱 我怎么知道这种题目都能构造树形结构. 根据高度构造一棵树,在树上倍增找到最大的小于约束条件高度的隔板,开一个 \(vector\) 记录一下,然后对于每个 \(v ...
- 「雅礼集训 2017 Day1」 解题报告
「雅礼集训 2017 Day1」市场 挺神仙的一题.涉及区间加.区间除.区间最小值和区间和.虽然标算就是暴力,但是复杂度是有保证的. 我们知道如果线段树上的一个结点,\(max=min\) 或者 \( ...
- 雅礼集训 Day1 T3 画作 解题报告
画作 题目描述 小\(\mathrm{G}\)的喜欢作画,尤其喜欢仅使用黑白两色作画. 画作可以抽象成一个\(r\times c\)大小的\(01\)矩阵.现在小\(\mathrm{G}\)构思好了他 ...
- 雅礼集训 Day7 T1 Equation 解题报告
Reverse 题目背景 小\(\text{G}\)有一个长度为\(n\)的\(01\)串\(T\),其中只有\(T_S=1\),其余位置都是\(0\).现在小\(\text{G}\)可以进行若干次以 ...
- 雅礼集训 Day6 T1 Merchant 解题报告
Merchant 题目描述 有\(n\)个物品,第\(i\)个物品有两个属性\(k_i,b_i\),表示它在时刻\(x\)的价值为\(k_i\times x+b_i\). 当前处于时刻\(0\),你可 ...
- 雅礼集训 Day5 T3 题 解题报告
题 题目背景 由于出题人赶时间所以没办法编故事来作为背景. 题目描述 一开始有\(n\)个苹果,\(m\)个人依次来吃苹果,第\(i\)个人会尝试吃\(u_i\)或\(v_i\)号苹果,具体来说分三种 ...
随机推荐
- 3.2.5 Magic Squares 魔板
3.2.5 Magic Squares 魔板 成功地发明了魔方之后,鲁比克先生发明了它的二维版本,称作魔板.这是一张有8个大小相同的格子的魔板: 1 2 3 4 8 7 6 5 我们知道魔板的每一个方 ...
- 【杂题总汇】Codeforces-67A Partial Teacher
[Codeforces-67A]Partial Teacher 上周刷了一大堆小紫薯的动态规划的题
- tp5简单构造
application 应用目录 网站核心index前台目录 controller 控制器admin 后台目录 model 数据模型view 视图extend 静态类库目录public 静态资源和入口 ...
- APUE中对出错函数的封装
// 输出至标准出错文件的出错处理函数static void err_doit(int, int, const char *, va_list); /* * Nonfatal error relate ...
- Codeforces Round 97B 点分治
B. Superset time limit per test 2 seconds memory limit per test 256 megabytes input standard input o ...
- Pandas 数据读取
1.读取table # 读取普通分隔数据:read_table # 可以读取txt,csv import os os.chdir('F:/') #首先设置一下读取的路径 data1 = pd.read ...
- Java线程和多线程(七)——ThreadLocal
Java中的ThreadLocal是用来创建线程本地变量用的.我们都知道,访问某个对象的所有线程都是能够共享对象的状态的,所以这个对象状态就不是线程安全的.开发者可以通过使用同步来保证线程安全,但是如 ...
- cocos2d-x 3.0的入门程序:helloworld
看过了这么多不同方向的应用,发现很多程序入门都是helloworldhelloworld是所有程序员的绝对初恋 先看一下程序的运行结果吧 然后就是他的工程代码 工程的目录有两个 Classes:程序中 ...
- 第四模块:网络编程进阶&数据库开发 练习
练习题 基于queue模块实现线程池 import threading from multiprocessing import Queue class A(threading.Thread): def ...
- 4525: [Cerc2012]Kingdoms
4525: [Cerc2012]Kingdoms 题意 n个国家,两两之间可能存在欠债或者被欠债的关系,一个国家破产:其支出大于收入.问一个国家能否坚持到最后. 思路 很有意思的一道题. dp[s]表 ...