高性能MySQL笔记-第5章Indexing for High Performance-002Hash indexes
一、
1.什么是hash index
A hash index is built on a hash table and is useful only for exact lookups that use every column in the index.
For each row, the storage engine computes a hash code of the indexed columns, which is a small value that will probably differ from the hash codes computed for other rows with different key values. It stores the hash codes in the index and stores a pointer to each row in a hash table.
In MySQL, only the Memory storage engine supports explicit hash indexes. They are the default index type for Memory tables, though Memory tables can have B-Tree indexes, too. The Memory engine supports nonunique hash indexes, which is unusual in the database world. If multiple values have the same hash code, the index will store
their row pointers in the same hash table entry, using a linked list.
2.hash index数据结构
-- hash index的数据结构
CREATE TABLE testhash (
fname VARCHAR(50) NOT NULL,
lname VARCHAR(50) NOT NULL,
KEY USING HASH(fname)
) ENGINE=MEMORY;

3.hash index的缺点
Because the indexes themselves store only short hash values, hash indexes are very compact. As a result, lookups are usually lightning fast. However, hash indexes have some limitations:
• Because the index contains only hash codes and row pointers rather than the values themselves, MySQL can’t use the values in the index to avoid reading the rows.Fortunately, accessing the in-memory rows is very fast, so this doesn’t usually degrade performance.
• MySQL can’t use hash indexes for sorting because they don’t store rows in sorted order.
• Hash indexes don’t support partial key matching, because they compute the hash from the entire indexed value. That is, if you have an index on (A,B) and your query’s WHERE clause refers only to A , the index won’t help.
• Hash indexes support only equality comparisons that use the = , IN() , and <=> operators (note that <> and <=> are not the same operator). They can’t speed up range queries, such as WHERE price > 100 .
• Accessing data in a hash index is very quick, unless there are many collisions (multiple values with the same hash). When there are collisions, the storage engine must follow each row pointer in the linked list and compare their values to the lookup value to find the right row(s).
• Some index maintenance operations can be slow if there are many hash collisions.For example, if you create a hash index on a column with a very low selectivity (many hash collisions) and then delete a row from the table, finding the pointer from the index to that row might be expensive. The storage engine will have to examine each row in that hash key’s linked list to find and remove the reference to the one row you deleted.
The InnoDB storage engine has a special feature called adaptive hash indexes. When InnoDB notices that some index values are being accessed very frequently, it builds a hash index for them in memory on top of B-Tree indexes. This gives its B-Tree indexes some properties of hash indexes, such as very fast hashed lookups. This process is completely automatic, and you can’t control or configure it, although you can disable the adaptive hash index altogether.
高性能MySQL笔记-第5章Indexing for High Performance-002Hash indexes的更多相关文章
- 高性能MySQL笔记-第5章Indexing for High Performance-001B-Tree indexes(B+Tree)
一. 1.什么是B-Tree indexes? The general idea of a B-Tree is that all the values are stored in order, and ...
- 高性能MySQL笔记-第5章Indexing for High Performance-004怎样用索引才高效
一.怎样用索引才高效 1.隔离索引列 MySQL generally can’t use indexes on columns unless the columns are isolated in t ...
- 高性能MySQL笔记-第5章Indexing for High Performance-005聚集索引
一.聚集索引介绍 1.什么是聚集索引? InnoDB’s clustered indexes actually store a B-Tree index and the rows together i ...
- 高性能MySQL笔记-第5章Indexing for High Performance-003索引的作用
一. 1. 1). Indexes reduce the amount of data the server has to examine.2). Indexes help the server av ...
- 高性能MySQL笔记 第6章 查询性能优化
6.1 为什么查询速度会慢 查询的生命周期大致可按照顺序来看:从客户端,到服务器,然后在服务器上进行解析,生成执行计划,执行,并返回结果给客户端.其中“执行”可以认为是整个生命周期中最重要的阶段. ...
- 高性能MySQL笔记 第5章 创建高性能的索引
索引(index),在MySQL中也被叫做键(key),是存储引擎用于快速找到记录的一种数据结构.索引优化是对查询性能优化最有效的手段. 5.1 索引基础 索引的类型 索引是在存储引擎层而 ...
- 高性能MySQL笔记 第4章 Schema与数据类型优化
4.1 选择优化的数据类型 通用原则 更小的通常更好 前提是要确保没有低估需要存储的值范围:因为它占用更少的磁盘.内存.CPU缓存,并且处理时需要的CPU周期也更少. 简单就好 简 ...
- 高性能MySQL笔记-第1章MySQL Architecture and History-001
1.MySQL架构图 2.事务的隔离性 事务的隔离性是specific rules for which changes are and aren’t visible inside and outsid ...
- 高性能MySQL笔记-第4章Optimizing Schema and Data Types
1.Good schema design is pretty universal, but of course MySQL has special implementation details to ...
随机推荐
- Struts2(2)
一.分模块开发:单独写模块的配置文件,把配置文件引入到核心配置文件中 Aaction的单独配置文件如下 <?xml version="1.0" encoding=" ...
- 省略setget方法
可以装一下这个插件再引入一个jar包实体类里不需要再写get/set方法了 maven坐标:<dependency> <groupId>org.projectlombok< ...
- Microsoft Visual Studio 2012 Update 4 RC 3 离线安装程序
Microsoft Visual Studio 2012 Update 4 RC 3 离线安装程序 ☆ 微软官网地址:☆ http://www.microsoft.com/en-us/download ...
- ACM提交,C++,G++,C,GCC的区别
今天做了一道水题,POJ-1004,水题一个,12个double类型的数求平均数 但是, #include <iostream> #include <cstdio> using ...
- 整理下PC和移动获取点击、移动坐标的代码和坑
一.PC PC是通过鼠标点击和移动,相对比较简单,比如onmousedown.onmouseup.onmousemove.onmouseout鼠标按键按下.按键起来.鼠标在元素上移动.鼠标从元素上离开 ...
- linux查看网络链接状况命令netstat
linux查看网络链接状况命令 netstat 参数如下: -a 显示所有socket,包括正在监听的. -c 每隔1秒就重新显示一遍,直到用户中断它. -i 显示所有网络接口的信息,格式同“ifco ...
- java-05String课堂练习
1.阅读以下代码查看输出结果 public class StringPool { public static void main(String args[]) { String s0="He ...
- LeetCode Relative Ranks
原题链接在这里:https://leetcode.com/problems/relative-ranks/#/description 题目: Given scores of N athletes, f ...
- 技术总监Sycx的故事
其实我在各种演讲里,线下吹牛里面无数次提及过他,讲过他的故事,但是总还是没有任何一次认认真真的详细讲过,所以,今天就讲讲他的故事吧. Sycx是福建漳州人,我经常开玩笑说,你生于一个著名的骗子之乡,为 ...
- GWT更改元素样式属性
GWT有时候不像普通网页那样可以自由的添加CSS改变样式,所幸gwt提供了一些底层的方法,通过这些方法来实现DOM操作等.通过gwt部件的getElement()可以取得dom上的元素,这时就能对该元 ...