高性能MySQL笔记-第5章Indexing for High Performance-002Hash indexes
一、
1.什么是hash index
A hash index is built on a hash table and is useful only for exact lookups that use every column in the index.
For each row, the storage engine computes a hash code of the indexed columns, which is a small value that will probably differ from the hash codes computed for other rows with different key values. It stores the hash codes in the index and stores a pointer to each row in a hash table.
In MySQL, only the Memory storage engine supports explicit hash indexes. They are the default index type for Memory tables, though Memory tables can have B-Tree indexes, too. The Memory engine supports nonunique hash indexes, which is unusual in the database world. If multiple values have the same hash code, the index will store
their row pointers in the same hash table entry, using a linked list.
2.hash index数据结构
-- hash index的数据结构
CREATE TABLE testhash (
fname VARCHAR(50) NOT NULL,
lname VARCHAR(50) NOT NULL,
KEY USING HASH(fname)
) ENGINE=MEMORY;
3.hash index的缺点
Because the indexes themselves store only short hash values, hash indexes are very compact. As a result, lookups are usually lightning fast. However, hash indexes have some limitations:
• Because the index contains only hash codes and row pointers rather than the values themselves, MySQL can’t use the values in the index to avoid reading the rows.Fortunately, accessing the in-memory rows is very fast, so this doesn’t usually degrade performance.
• MySQL can’t use hash indexes for sorting because they don’t store rows in sorted order.
• Hash indexes don’t support partial key matching, because they compute the hash from the entire indexed value. That is, if you have an index on (A,B) and your query’s WHERE clause refers only to A , the index won’t help.
• Hash indexes support only equality comparisons that use the = , IN() , and <=> operators (note that <> and <=> are not the same operator). They can’t speed up range queries, such as WHERE price > 100 .
• Accessing data in a hash index is very quick, unless there are many collisions (multiple values with the same hash). When there are collisions, the storage engine must follow each row pointer in the linked list and compare their values to the lookup value to find the right row(s).
• Some index maintenance operations can be slow if there are many hash collisions.For example, if you create a hash index on a column with a very low selectivity (many hash collisions) and then delete a row from the table, finding the pointer from the index to that row might be expensive. The storage engine will have to examine each row in that hash key’s linked list to find and remove the reference to the one row you deleted.
The InnoDB storage engine has a special feature called adaptive hash indexes. When InnoDB notices that some index values are being accessed very frequently, it builds a hash index for them in memory on top of B-Tree indexes. This gives its B-Tree indexes some properties of hash indexes, such as very fast hashed lookups. This process is completely automatic, and you can’t control or configure it, although you can disable the adaptive hash index altogether.
高性能MySQL笔记-第5章Indexing for High Performance-002Hash indexes的更多相关文章
- 高性能MySQL笔记-第5章Indexing for High Performance-001B-Tree indexes(B+Tree)
一. 1.什么是B-Tree indexes? The general idea of a B-Tree is that all the values are stored in order, and ...
- 高性能MySQL笔记-第5章Indexing for High Performance-004怎样用索引才高效
一.怎样用索引才高效 1.隔离索引列 MySQL generally can’t use indexes on columns unless the columns are isolated in t ...
- 高性能MySQL笔记-第5章Indexing for High Performance-005聚集索引
一.聚集索引介绍 1.什么是聚集索引? InnoDB’s clustered indexes actually store a B-Tree index and the rows together i ...
- 高性能MySQL笔记-第5章Indexing for High Performance-003索引的作用
一. 1. 1). Indexes reduce the amount of data the server has to examine.2). Indexes help the server av ...
- 高性能MySQL笔记 第6章 查询性能优化
6.1 为什么查询速度会慢 查询的生命周期大致可按照顺序来看:从客户端,到服务器,然后在服务器上进行解析,生成执行计划,执行,并返回结果给客户端.其中“执行”可以认为是整个生命周期中最重要的阶段. ...
- 高性能MySQL笔记 第5章 创建高性能的索引
索引(index),在MySQL中也被叫做键(key),是存储引擎用于快速找到记录的一种数据结构.索引优化是对查询性能优化最有效的手段. 5.1 索引基础 索引的类型 索引是在存储引擎层而 ...
- 高性能MySQL笔记 第4章 Schema与数据类型优化
4.1 选择优化的数据类型 通用原则 更小的通常更好 前提是要确保没有低估需要存储的值范围:因为它占用更少的磁盘.内存.CPU缓存,并且处理时需要的CPU周期也更少. 简单就好 简 ...
- 高性能MySQL笔记-第1章MySQL Architecture and History-001
1.MySQL架构图 2.事务的隔离性 事务的隔离性是specific rules for which changes are and aren’t visible inside and outsid ...
- 高性能MySQL笔记-第4章Optimizing Schema and Data Types
1.Good schema design is pretty universal, but of course MySQL has special implementation details to ...
随机推荐
- 23 Python 面向对象
面向过程 VS 面向对象 面向过程的程序设计的核心是过程(流水线式思维),过程即解决问题的步骤,面向过程的设计就好比精心设计好一条流水线,考虑周全什么时候处理什么东西. 优点是:极大的降低了写程序的复 ...
- react-webpack(一)
要让webpack知道这就是我们的index.html入口文件,并且我们不需要手动引入打包后的js文件,需要安装html-webpack-plugin npm install html-webpack ...
- spring MVC HandlerInterceptorAdapter
SpringMVC 中的Interceptor 拦截器也是相当重要和相当有用的,它的主要作用是拦截用户的请求并进行相应的处理.比如通过它来进行权限验证,或者是来判断用户是否登陆,或者是像12306 那 ...
- Python with 结构
一段基本的 with 表达式,其结构是这样的: with EXPR as VAR: BLOCK EXPR 可以是任意表达式: as VAR 是可选的.其一般的执行过程是这样的: 计算 EXPR ,并获 ...
- php 利用header 函数 下载各种文件
http://www.php.net/manual/en/function.readfile.php <?php /** * 下载文件 * header函数 * */ dl_file($_GET ...
- ACM学习历程—HDU5696 区间的价值(分治 && RMQ && 线段树 && 动态规划)
http://acm.hdu.edu.cn/showproblem.php?pid=5696 这是这次百度之星初赛2B的第一题,但是由于正好打省赛,于是便错过了.加上2A的时候差了一题,当时有思路,但 ...
- ubuntu lts install licode tag pre-v5.4
1. Requirements Ubuntu 14.04 LTS 2. Clone Licode codeYou first need to clone our code from github.Yo ...
- PHP获取汉字拼音首字母 截取中文字符串
http://blog.csdn.net/everything1209/article/details/39005785 substr是按字符分割,而mb_strcut是按字节来分割,但是都不会产生半 ...
- JAVA 正则表达式 Regex
//正则表达式,去掉空格.换行.制表位 public static void replaceBlank(){ Pattern p = Pattern.compile("\\s*|\t|\r| ...
- Linux内核 - 定时器
#include <linux/timer.h> //头文件 struct timer_list mytimer; //定义变量 static void my_timer(unsigned ...