N是完全平方数 <----> N有奇数个约数

设:N = n*n

充分性:

1、N=1时,N的约数为1,为奇数

2、N>1时,1.....n......N,其中 1, n, N为N的3个约数。若在1~n之间存在另外一个约数m1,则在n~N之间必存在约数N/m1,同理,有m2,则存在N/m2,即必有 (3 + 偶数)个,为奇数

必要性:

1、如果N的约数只有两个,那只能是1和N本身,则N是一个质数,肯定不是完全平方数

2、若N除了1和N本身之外,还存在另外一个约数m,则必存在约数N/m,所以N的约数为(2 + 偶数)个,为偶数

3、除非m与N/m相等,这样才能将“两个”约数合并为1个约数,产生奇数个约数。即 m = N/m , N = m*m,即,N是完全平方数

数论 N是完全平方数 充分必要条件 N有奇数个约数的更多相关文章

  1. 【LightOJ1336】Sigma Function(数论)

    [LightOJ1336]Sigma Function(数论) 题面 Vjudge 求和运算是一种有趣的操作,它来源于古希腊字母σ,现在我们来求一个数字的所有因子之和.例如σ(24)=1+2+3+4+ ...

  2. C#LeetCode刷题之#367-有效的完全平方数(Valid Perfect Square)

    问题 该文章的最新版本已迁移至个人博客[比特飞],单击链接 https://www.byteflying.com/archives/3869 访问. 给定一个正整数 num,编写一个函数,如果 num ...

  3. 莫比乌斯反演&各种筛法

    不学莫反,不学狄卷,就不能叫学过数论 事实上大概也不是没学过吧,其实上赛季头一个月我就在学这东西,然鹅当时感觉没学透,连杜教筛复杂度都不会证明,所以现在只好重新来学一遍了(/wq 真·实现了水平的负增 ...

  4. 2014年第五届蓝桥杯C/C++程序设计本科B组决赛

    1.年龄巧合(枚举) 2.出栈次序(推公式/Catalan数) 3.信号匹配(kmp) 4.生物芯片(完全平方数) 5.Log大侠(线段树) 6.殖民地 1.年龄巧合 小明和他的表弟一起去看电影,有人 ...

  5. #509. 「LibreOJ NOI Round #1」动态几何问题

    下面给出部分分做法和满分做法 有一些奇妙的方法可以拿到同样多的分数,本蒟蒻只能介绍几种常见的做法 如果您想拿18分左右,需要了解:质因数分解 如果您想拿30分左右,需要了解:一种较快的筛法 如果您想拿 ...

  6. 算法笔记_205:第五届蓝桥杯软件类决赛真题(C语言B组)

    目录 1 年龄巧合 2 出栈次序 3 信号匹配 4 生物芯片 5 Log大侠 6 殖民地   前言:以下代码仅供参考,若有错误欢迎指正哦~ 1 年龄巧合 小明和他的表弟一起去看电影,有人问他们的年龄. ...

  7. nowcoder(牛客网)OI测试赛2 解题报告

    qwq听说是一场普及组难度的比赛,所以我就兴高采烈地过来了qwq 然后发现题目确实不难qwq.....但是因为蒟蒻我太蒻了,考的还是很差啦qwq orz那些AK的dalao们qwq 赛后闲来无事,弄一 ...

  8. leetcode有意思的题目总结

    231. 2的幂 2^3=8 得  8是2的幂 判断一个整数是不是2的幂,可根据二进制来分析.2的幂如2,4,8,等有一个特点: 二进制数首位为1,其他位为0,如2为10,4为100 2&(2 ...

  9. 蓝桥杯 历届试题 PREV-34 矩阵翻硬币

    历届试题 矩阵翻硬币   时间限制:1.0s   内存限制:256.0MB 问题描述 小明先把硬币摆成了一个 n 行 m 列的矩阵. 随后,小明对每一个硬币分别进行一次 Q 操作. 对第x行第y列的硬 ...

随机推荐

  1. SwitchyOmega 代理设置

    1.SwitchyOmega官网 https://www.switchyomega.com/ 2.下载插件 https://www.switchyomega.com/download.html 3.配 ...

  2. sh脚本——#!/bin/bash

    #!/bin/bash是指此脚本使用/bin/bash来解释执行. 其中,#!是一个特殊的表示符,其后,跟着解释此脚本的shell路径. bash只是shell的一种,还有很多其它shell,如:sh ...

  3. 混合背包 hdu5410 CRB and His Birthday

    传送门:点击打开链接 题意:你有M块钱,如今有N件商品 第i件商品要Wi块,假设你购买x个这种商品.你将得到Ai*x+Bi个糖果 问能得到的最多的糖果数 思路:很好的一道01背包和全然背包结合的题目 ...

  4. VueJS参数绑定:v-bind:href,v-on:event

    参数绑定HTML <!DOCTYPE html> <html> <head> <meta charset="utf-8"> < ...

  5. AOSP ON MAKO(在NEXUS 4上刷ANDROID 4.4 源代码包-下载/配置/编译/刷机)

    AOSP ON MAKO(在NEXUS 4上刷ANDROID 4.4 源代码包-下载/配置/编译/刷机) 特别感谢google官方文档及AOSP源代码开放 參考链接: https://source.a ...

  6. C++ &quot;#&quot;的作用和使用方法

    本系列文章由 @yhl_leo 出品,转载请注明出处. 文章链接: http://blog.csdn.net/yhl_leo/article/details/48879093 1 #和##的作用和使用 ...

  7. .Net——实现IConfigurationSectionHandler接口定义处理程序处理自定义节点

    除了使用.net里面提供的内置处理程序来处理我们的自定义节点外,我们还可以通过多种方法,来自己定义处理类处理我们的自定义节点,本文主要介绍通过实现IConfigurationSectionHandle ...

  8. TCP 同步传输:客户端发送,服务器段接收

    1.服务器端程序 可以在TcpClient上调用GetStream()方法来获的链接到远程计算机的网络流NetworkStream.当在客户端调用时,他获的链接服务器端的流:当在服务器端调用时,他获得 ...

  9. [Phoenix] 一、快速入门

    Phoenix是一个开源的HBASE SQL层.Phoeinx可以用标准的JDBC API替代HBASE client API来创建表,插入和查询HBASE中的数据. Phoenix作为应用层和HBA ...

  10. Create a /etc/yum.repos.d/mongodb-org-4.0.repo

    Install MongoDB Community Edition on Red Hat Enterprise or CentOS Linux — MongoDB Manual https://doc ...