题目描述

著名游戏设计师vfleaking,最近迷上了Nim。普通的Nim游戏为:两个人进行游戏,N堆石子,每回合可以取其中某一堆的任意多个,可以取完,但不可以不取。谁不能取谁输。这个游戏是有必胜策略的。于是vfleaking决定写一个玩Nim游戏的平台来坑玩家。
为了设计漂亮一点的初始局面,vfleaking用以下方式来找灵感:拿出很多石子,把它们聚成一堆一堆的,对每一堆编号1,2,3,4,...n,在堆与堆间连边,没有自环与重边,从任意堆到任意堆都只有唯一一条路径可到达。然后他不停地进行如下操作:
1.随机选两个堆v,u,询问若在v到u间的路径上的石子堆中玩Nim游戏,是否有必胜策略,如果有,vfleaking将会考虑将这些石子堆作为初始局面之一,用来坑玩家。
2.把堆v中的石子数变为k。
由于vfleaking太懒了,他懒得自己动手了。请写个程序帮帮他吧。

输入

第一行一个数n,表示有多少堆石子。
接下来的一行,第i个数表示第i堆里有多少石子。
接下来n-1行,每行两个数v,u,代表v,u间有一条边直接相连。
接下来一个数q,代表操作的个数。
接下来q行,每行开始有一个字符:
如果是Q,那么后面有两个数v,u,询问若在v到u间的路径上的石子堆中玩Nim游戏,是否有必胜策略。
如果是C,那么后面有两个数v,k,代表把堆v中的石子数变为k。
对于100%的数据:
1≤N≤500000, 1≤Q≤500000, 0≤任何时候每堆石子的个数≤32767
其中有30%的数据:
石子堆组成了一条链,这3个点会导致你DFS时爆栈(也许你不用DFS?)。其它的数据DFS目测不会爆。
注意:石子数的范围是0到INT_MAX

输出

对于每个Q,输出一行Yes或No,代表对询问的回答。

样例输入

【样例输入】
5
1 3 5 2 5
1 5
3 5
2 5
1 4
6
Q 1 2
Q 3 5
C 3 7
Q 1 2
Q 2 4
Q 5 3

样例输出

Yes
No
Yes
Yes
Yes


题解

DFS序+树状数组+倍增LCA

首先有一个结论:Nim游戏先手必胜的充分必要条件是每堆石子个数的异或和不为0。证明到处都有,这里不证了。

所以我们只需要维护两个点路径上数的异或和即可。

考虑到x^x=0,所以我们可以维护一个DFS入栈出栈序,每个位置的权值都是w[x]。

在查询时,可以用root~x与root~y异或,但是由于图中是点权,这样做会丢掉lca(x,y),所以需要再求一次lca并加到答案中。

使用树状数组维护异或和,树上倍增求lca,时间复杂度为$O(n\log n)$

另外,本题裸上dfs的话,如果只传递一个参数,是不会爆栈的。

#include <cstdio>
#include <algorithm>
#define N 500010
using namespace std;
int a[N] , head[N] , to[N << 1] , next[N << 1] , cnt , fa[N][20] , deep[N] , log[N] , f[N << 1] , v[N << 1] , tot , lp[N] , rp[N];
char str[5];
void add(int x , int y)
{
to[++cnt] = y , next[cnt] = head[x] , head[x] = cnt;
}
void dfs(int x)
{
int i;
lp[x] = ++tot , v[tot] = a[x];
for(i = 1 ; i <= log[deep[x]] ; i ++ )
fa[x][i] = fa[fa[x][i - 1]][i - 1];
for(i = head[x] ; i ; i = next[i])
if(to[i] != fa[x][0])
fa[to[i]][0] = x , deep[to[i]] = deep[x] + 1 , dfs(to[i]);
rp[x] = ++tot , v[tot] = a[x];
}
int getlca(int x , int y)
{
int i;
if(deep[x] < deep[y]) swap(x , y);
for(i = log[deep[x] - deep[y]] ; ~i ; i -- )
if(deep[x] - (1 << i) >= deep[y])
x = fa[x][i];
for(i = log[deep[x]] ; ~i ; i -- )
if(deep[x] - (1 << i) >= 0 && fa[x][i] != fa[y][i])
x = fa[x][i] , y = fa[y][i];
return x == y ? x : fa[x][0];
}
void update(int x , int a)
{
int i;
for(i = x ; i <= tot ; i += i & -i) f[i] ^= a;
}
int query(int x)
{
int i , ans = 0;
for(i = x ; i ; i -= i & -i) ans ^= f[i];
return ans;
}
int main()
{
int n , m , i , x , y , t;
scanf("%d" , &n);
for(i = 1 ; i <= n ; i ++ ) scanf("%d" , &a[i]);
for(i = 1 ; i < n ; i ++ ) scanf("%d%d" , &x , &y) , add(x , y) , add(y , x);
for(i = 2 ; i <= n ; i ++ ) log[i] = log[i >> 1] + 1;
dfs(1);
for(i = 1 ; i <= tot ; i ++ ) update(i , v[i]);
scanf("%d" , &m);
while(m -- )
{
scanf("%s%d%d" , str , &x , &y);
if(str[0] == 'Q') t = getlca(x , y) , printf("%s\n" , query(lp[x]) ^ query(lp[y]) ^ a[getlca(x , y)] ? "Yes" : "No");
else update(lp[x] , a[x] ^ y) , update(rp[x] , a[x] ^ y) , a[x] = y;
}
return 0;
}

【bzoj2819】Nim DFS序+树状数组+倍增LCA的更多相关文章

  1. BZOJ 2819: Nim( nim + DFS序 + 树状数组 + LCA )

    虽然vfleaking好像想卡DFS...但我还是用DFS过了... 路径上的石堆异或和=0就是必败, 否则就是必胜(nim游戏). 这样就变成一个经典问题了, 用DFS序+BIT+LCA就可以在O( ...

  2. bzoj 2819(DFS序+树状数组+博弈+lca)

    2819: Nim Time Limit: 20 Sec  Memory Limit: 128 MBSubmit: 2045  Solved: 795[Submit][Status][Discuss] ...

  3. 【bzoj3779】重组病毒 LCT+树上倍增+DFS序+树状数组区间修改区间查询

    题目描述 给出一棵n个节点的树,每一个节点开始有一个互不相同的颜色,初始根节点为1. 定义一次感染为:将指定的一个节点到根的链上的所有节点染成一种新的颜色,代价为这条链上不同颜色的数目. 现有m次操作 ...

  4. 【bzoj1146】[CTSC2008]网络管理Network 倍增LCA+dfs序+树状数组+主席树

    题目描述 M公司是一个非常庞大的跨国公司,在许多国家都设有它的下属分支机构或部门.为了让分布在世界各地的N个部门之间协同工作,公司搭建了一个连接整个公司的通信网络.该网络的结构由N个路由器和N-1条高 ...

  5. 【BZOJ】2819: Nim(树链剖分 / lca+dfs序+树状数组)

    题目 传送门:QWQ 分析 先敲了个树链剖分,发现无法AC(其实是自己弱,懒得debug.手写栈) 然后去学了学正解 核心挺好理解的,$ query(a) $是$ a $到根的异或和. 答案就是$ l ...

  6. HDU 5293 Tree chain problem 树形dp+dfs序+树状数组+LCA

    题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=5293 题意: 给你一些链,每条链都有自己的价值,求不相交不重合的链能够组成的最大价值. 题解: 树形 ...

  7. HDU 3887:Counting Offspring(DFS序+树状数组)

    http://acm.hdu.edu.cn/showproblem.php?pid=3887 题意:给出一个有根树,问对于每一个节点它的子树中有多少个节点的值是小于它的. 思路:这题和那道苹果树是一样 ...

  8. Codeforces Round #225 (Div. 1) C. Propagating tree dfs序+树状数组

    C. Propagating tree Time Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://codeforces.com/contest/383/p ...

  9. BZOJ 2434: [Noi2011]阿狸的打字机( AC自动机 + DFS序 + 树状数组 )

    一个串a在b中出现, 那么a是b的某些前缀的后缀, 所以搞出AC自动机, 按fail反向建树, 然后查询(x, y)就是y的子树中有多少是x的前缀. 离线, 对AC自动机DFS一遍, 用dfs序+树状 ...

随机推荐

  1. UVALive 3026 Period (KMP算法简介)

    kmp的代码很短,但是不太容易理解,还是先说明一下这个算法过程吧. 朴素的字符串匹配大家都懂,但是效率不高,原因在哪里? 匹配过程没有充分利用已经匹配好的模版的信息,比如说, i是文本串当前字符的下标 ...

  2. Java压缩字符串工具类

    StringCompressUtils.java package javax.utils; import java.io.ByteArrayInputStream; import java.io.By ...

  3. Paper: 《Bert》

    Bert: Bidirectional Encoder Representations from Transformers. 主要创新点:Masked LM 和 Next sentence predi ...

  4. ps基础实例

    一:合并多个图片 1.先新件一个图片)CTRL+N),大小定成你想要的大小 2.把你要放入的照片用PS打开 3.把放入的照片用移动工具(V)拉到新件的图片里面 4.用CTRL+T调整大小(按住SHIF ...

  5. cocos2dx 使用XMLHttpRequest时回调status为0的问题

    今天使用cocos连接http访问时,使用XMLHttpRequest在pc上反问时正常的返回了status=0,但是在android上去返回status是0,看了一下底层代码, 发现status只有 ...

  6. 【交互 细节题 思维题】cf1064E. Dwarves, Hats and Extrasensory Abilities

    第一次做交互真有趣……:挺好的细节思维题 This is an interactive problem. In good old times dwarves tried to develop extr ...

  7. spring boot自动配置实现

    自从用了spring boot,都忘记spring mvc中的xml配置是个什么东西了,再也回不去.为啥spring boot这么好用呢, 约定大于配置的设计初衷, 让我们只知道维护好applicat ...

  8. MySQL多源复制

    MySQL多源复制 1. 配置多源复制 1.1 配置环境如下 1.2 从库的重要参数配置 1.3 在Master上导出需要同步的数据库 1.4 在master上创建复制账号 1.5 备份数据导入 1. ...

  9. unbuntu14下Qt4.8 和MySQL连接问题 QSqlDatabase: QMYSQL driver not loaded QSqlDatabase: available drivers: QSQLITE

    使用 QSqlDatabase::addDatabase创建数据库时 会报错: QSqlDatabase: QMYSQL driver not loaded QSqlDatabase: availab ...

  10. Yii2.0 的安装学习

    视频学习地址: 后盾网视频: http://www.houdunren.com/houdunren18_lesson_76?vid=7350 与<Yii框架>不得不说的故事—基础篇 htt ...